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QUANTUM DROPLETS IN ULTRA COLD ATOMIC SYSTEMS

SK. SIDDIK AND GOLAM ALI SEKH*

We consider Bose-Einstein condensates (BEC) beyond mean-field theory by taking account
quantum fluctuation. The quantum fluctuation due to Lee-Huang-Yang term along with mean
field interaction gives an effective Gross-Pitaevskii equation that describes quantum droplets.
Density distributions of droplets are localized with flat top and they are linearly stable. We also
calculate Shannon entropy of the quantum droplet and find that it starts to increase abruptly at
the threshold of droplet phase.
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Introduction

Since the experimental observation of Bose-Einstein
condensates (BECs) by Eric Cornell and Carl
Wieman of the University of Colorado and

Wolfgang Ketterle of MIT1,2, the system ultra cold atoms
have been exploring to study different physical
phenomenon both experimentally and theoretically due to
its flexibility to control different parameters. Several
phenomena like vortex formation, Mott insulator, superfluid-
Mott transition, Anderson localization and delocalization,
supersolid, Josephson and Bloch oscillation have already
been observed.

Atoms in the condensates are weakly interacting
through mean-field interaction. This interaction can,
however, be controlled with the help of Feshbach
resonance technique that allows to generate matter-wave
solitons in the BECs. A soliton is a solitary wave which is
a localized travelling wave that does not spread or disperse,
but retain its size, shape, and speed when it moves. Bose-
Einstein condensate supports dark solitons for repulsive
interactions and bright solitons for attractive interactions.
In a periodic potential the BEC with repulsive inter-atomic
interaction can permit matter-wave gap solitons.

Beside the mean-field interaction, one can expect
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another type of interaction due quantum fluctuations. An
interplay of quantum fluctuation and effective mean field
interaction allows the formation of self- bound liquid like
states. Thus, the generation of quantum droplets is purely
a manifestation of quantum nature3. Quantum droplet is
one of the most remarkable discoveries in contemporary
science. Its generation in very dilute ultra-cold   gases
does not follow the classical liquid.  The main advantage
of creating QDs in ultra-cold atomic systems is that it is
highly controllable with external parameters4,5.

Our objective in the present paper is to study the
properties of quantum droplet in the BEC and analyse its
linear stability. It is seen that the attractive mean-field
interaction leads to a sharp-peaked density distribution.
Top of the distribution becomes flat due to quantum
fluctuation. Both the states are linearly stable. We see
that the change in the properties of density distribution in
quantum droplet phase is manifested in the change of
Shannon entropy. Several studies based on Shannon
entropy clearly reveal the fact that it is efficient to detect
global changes of the properties of a system6-8.

In section 2, we discuss the theoretical formulation
and write an effective equation to describe the effects of
quantum fluctuation. More specifically, we get a modified
Gross-Pitaevski equation with Lee-Huang-Yang term. In
section 3, we present linear stability analysis and measure
Shannon entropy of the droplet. In section 4, we make
concluding remarks.
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The Oretical Formulation for Quantum
Droplets

Bose Einstein condensate (BEC) is a state of matter
in which all particles coalesce into a single quantum
mechanical lowest energy state when cooled below the
absolute zero Kelvin temperature.  Ground state dynamics
of BEC with mean-field interactions and confined in an
external potential ( )extV r  can be described by Gross-
Piteavaskii equation (GPE)
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Here  ,r t  is the wave function which is

normalized to N and 24  sg a m . By substituting

 , ( )   i tr t r e    in Eq.(1), one can obtain the
following time-independent GP equation to study
properties of stationary solution.
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where μ represents the chemical potential of the
condensate. It gives a self-bound soliton in attractive
interactions (g < 0), called bright soliton9. For weakly
interacting systems at temperature much below the critical
temperature, the quantum fluctuations are negligible.
However, there are some situations where quantum
fluctuations are not negligible.  The underlying theory
relies on the Lee-Huang-Yang (LHY) correction to the mean
field Gross-Pitaevskii equation (GPE).  The effective GP
equation with LHY term in describing Q1D Bose-Einstein
condensates is given10
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For convenience, we reduce equation (3) into
dimensionless form by adopting new variables 0 , t t t
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Here the tildes are omitted.  In Eq. (4), length, time,

energy and wave function are rescaled by 
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respectively. For a stationary solution ( )x  with chemical
potential 0 , one can write
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Considering tight trapping in the transverse direction
and flat trapping in the x-direction, the effect of trapping
on the BECs can be ignored near the centre of the trap.
Under this approximation, eq. (5) gives rise to the known
family of exact QD solutions11
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where μ lies between 20
9

   . The norm of Eq. (6) is

given by
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In the limit of 0 , density profile 
2( ) x 

describes traditional bright soliton dominated by the mean-

Fig. 1: Spatial density distribution, 
2( )x  for different values of

N. Here,  black solid, red dashed, blue dotted and black dotted-
dashed give the densities for N=9.2633, 8.23159, 7.26615, 6.12967
respectively.
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field cubic non-linearity. However, density profiles changes

in 
2
9

    limit (Fig.1).  The top of the density profile
becomes flat as the system tends towards the QD regime
due to interplay between mean-field attractive interactions
and repulsive interaction arising from quantum fluctuations.

Fig. 2: Variation of 
( )dN

d

  with the norm N.

With a view to check linear stability of quantum
droplet we make use of Vakhitov-Kolokolov (VK) criterion
which states that the solution in Eq. (5) will be linearly

stable if 
( ) 0

dN
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.  In figure 2, we display 
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  as

a function of N. It clearly shows that 
( )dN
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 remains

negative and thus droplets are linearly stable11. It may be
noted that VK criterion is a necessary condition for the
stability of localized states supported by any self-attractive
nonlinearity10.

Shannon Entropy of Quantum Droplet

In order to identify the changes of traditional soliton
and flat top soliton as the chemical potential varies

0  to 
2
9

  , we make use of Shannon entropy.
This entropy possesses a global character and thus efficient
to detect global change in the density distribution. The
Shannon entropy  S  in the position space is defined
by6-8,12

( ) ln ( ) . S x x dx   (8)

Here ( )x  stands for density distribution
corresponding to the wave function   normalized to . It
is interesting to note that the entropy suddenly increases

as 2
9

    indicating the appearance of droplet phase.

The entropy is minimum near the droplet phase. It again
increases as the system tends toward soliton phase.
However, the increment in this is much slower than that in
the case droplet phase (Fig. 3). These two phases are

clearly visible if one looks the change of S  with ( )dN
d



.

More specifically, it finds a distinct minimum in between
the soliton and droplet phases (Fig. 4). Negative values of

( )dN
d



 implying that both the phases are linearly stable.

Fig. 3: Shannon entropy with chemical potential.

Fig. 4: Shannon entropy versus 
( )dN

d

 .

Conclusion

Quantum droplets is one of the manifestations of
quantum fluctuation in Bose-Einstein condensates. It needs
a theoretical description beyond mean-field theory. A mean-
field approximation at zero temperature leads to the
formation of bright matter-wave solitons due to interplay
between dispersion and attractive nonlinear interaction. In
presence of quantum fluctuations, we can expect to
observe an interplay between the bright solitons and
quantum droplets. At the point of transition from soliton
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to droplet state, the three energy scales; kinetic energy,
mean-field energy and quantum fluctuation are comparable.
We have measured the Shannon entropy and found that
it increases abruptly in the quantum droplet phase while
its increment is slower in the soliton phase. In between
these two phases, the entropy finds its minimum value.
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