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KOLKATA PAISE RESTAURANT (KPR) PROBLEM

ASIM GHOSH1,* AND SUDIP MUKHERJEE2,3,†

The Kolkata Paise Restaurant (KPR) problem is a repeated game, played between a large number
N of agents having no interaction with each other. In the KPR problem, the customers or agents
choose from N restaurants each day simultaneously in parallel decision mode. The problem was
created in 2007 by B. K. Chakrabarti. In this review article, we will briefly discuss the strategies
developed for KPR problem and also the problems where KPR strategies were applied. In the
appendix section, we display the articles and books where Kolkata Paise Restaurant problem was
appeared in their citation lists by the scientists outside from Kolkata.
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Introduction

The Kolkata Paise Restaurant (KPR) problem is
repeatedly played among a large number N of
agents or players having no interaction amongst

themselves. The agents or players choose from N´
restaurants each evening independently (N´ ≤ N). In the
problem the prospective customers or players each have
the same set of data regarding the success or failure of the
various restaurants: the data set gives the number of
prospective customers arriving at each restaurant for the
past evenings. Let us assume that the price for the meal to
be the same for all the restaurants though the customers
can have a ranking of preference for each restaurant (agreed
upon by all customers). For simplicity we also assume that
each restaurant can serve only one customer any evening.
As already mentioned, information about the customer
distributions for earlier evenings is available to everyone.

Each customer will try to go to the restaurant with
the highest possible rank while avoiding the crowd so as
to be able to get dinner there. If any restaurant is chosen

by more than one customer on any evening, one of them
will be randomly chosen (each of them is anonymously
treated) and will be served. The rest will not get dinner
that evening. The customers collectively learn from their
attempts in the past, how to avoid the crowd to get the
meal from a high ranking restaurant.

Many years ago, in Kolkata, there were very popular,
cheap and fixed rate “Paise Hotel” that were mostly visited
by the daily workers or laborers coming to the city for
construction works etc. They used to walk (to save the
transport costs) to one of these restaurants for their lunches
during the tiffin time and would miss lunch if they got to a
crowded restaurant. Searching for the next restaurant would
mean failing to report back to work on time! Paise is the
smallest-value Indian coin. There were indeed some well-
known rankings of these restaurants, as some of the
restaurants would offer tastier food items compared to the
others.

A more general example of such a problem can be
when the public administration provides hospitals (and
beds) in every locality but the locals prefer better ranked
hospitals (commonly agreed by everyone) elsewhere. They
would then be competing with other ‘outsiders’ as well as
with the local patients of that locality. Unavailability of
treatment in the over-crowed hospitals may be considered
as lack of the service for those people and consequently
as (social) wastage of service by those unattended hospitals.
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One (trivial or dictator’s) solution to the KPR problem
may be the following: planner (or dictator) requests (or
orders) everyone to form a que and each one is assigned a
restaurant with rank matching the sequence of the person
in the que on the first evening. Then each person will be
told to go to the next ranked restaurant in the following
evening (for the person in the last ranked restaurant will
go to the first ranked restaurant). This shifting process (with
periodic boundary condition) will continue for successive
evenings. We call this dictator’s solution. This is one of
the most efficient solution (with utilization fraction of the
services by the restaurants equal to unity) and the system
achieves this efficiency immediately (from the first evening
itself). However, this cannot be any acceptable solution of
the KPR problem in reality, where each agent takes his or
her own decision (in parallel or democratically) every
evening, based on commonly shared information about past
events. In KPR problem, the prospective customers try to
evolve a learning strategy to get dinners eventually at the
best possible ranked restaurant, avoiding the crowd.
Generally the evolution of these strategies take considerable
time to converge and even then the eventual utilization
fraction is far below unity.

The Kolkata Paise Restaurant (KPR) was first
conceived in an earlier form in 20071 and the present
formation of the problem was made2,3. After that, several
developments were made (including quantum version of
the KPR problem)4-21. Several reviews and books covering
the KPR problems can be found in the22-25,25-32. A list of
papers, extending the KPR problem to different social
situations can be found in the33-44. In this review article,
we will briefly discuss the strategies developed for KPR
problem and also the problems where KPR strategies were
applied. In the appendix section, we display the articles
and books where Kolkata Paise Restaurant problem was
appeared in their citation lists by the scientists outside from
Kolkata.

Stochastic Learning Strategies

Here we are going to discuss the dynamics of a few
(classical) stochastic learning strategies for the KPR
problem, where N agents choose among N´ (let N´ = N)
equally priced but differently ranked restaurants every
evening such that each agent tries to get dinner in the best
restaurant (each serving only one customer and the rest
arriving there going without dinner that evening). All agents
are taking similar (but not the same) learning strategies
and assume that each follow the same probabilistic or
stochastic strategy dependent on the information of the past

in the game. We will show that a few of these strategies
lead to much better utilization of the services than most
others.

Suppose an agent chooses the k-th restaurant having
rank rk on any day (t) with the probability pk(t) given by

( 1)1( ) exp ,k
k k

n t
p t r

Z T
ξ⎡ ⎤−⎛ ⎞

= −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

1

( 1)
exp ,

N
k

k
k

n t
Z r

T
ξ

=

⎡ ⎤−⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ (1)

where nk(t) is the number of agents arriving at the rk-th
ranked restaurant on the t-th day where T > 0 is a scaling
(noise) factor and ξ ≥ 0 is an exponent. Therefore, the
probability of selecting a particular restaurant increases with
its rank rk and decreases with its popularity in the previous
day (given by the number nk(t – 1)). Few properties of the
strategies leading to the above probability are the following:

1. For ξ = 0 and 
1, ( )kT p t
N

→∞ =  corresponds to

the purely random choice case for which the
average utilization fraction is around 0.63, i.e., on
an average the utilization of the restaurants is 63%.

2. For ξ = 0 and T → 0, the agents still choose
randomly but avoid completely those restaurants
which had been visited in the last evening or day
(n(t – 1)) is non-zero). Thus choose (again
randomly) from the remaining restaurants. Both
analytically and in numerical simulations it seen
that the average utilization fraction f– is around
0.46.

These limiting and also some intermediate cases are
given below.

A. Random Choice Strategies : Let us consider the
case with rk = 1 for all k (restaurants). Suppose there are
λN agents and N restaurants. An agent can select any
restaurant with equal probability. Therefore, the probability
that a single restaurant is chosen by m agents is given by
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So, the fraction of restaurants not chosen by any
agents is given by Δ(m = 0) = exp(– λ) which implies that
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average fraction of restaurants occupied on any evening is
given by

1 exp( ) 0.63 for 1f λ λ= − − − =% (3)

for random choice case in the KPR problem2. It may be
noted this value of the resource utilization factor f– is
obtained at the very rst evening. The convergence time τ
here is therefore zero convergence time.

Fig. 1: Figure shows the probability distributions of every day utilization
f (f = 1 denotes 100% utilization) for dierent strategies. All distributions
are Gaussian shape with peaks at f = 0.63 (random choice),
f = 0.58 (simple rank dependent choice) and f = 0.80 (crowed avoiding
choice).

B. Rank Dependent Strategies: Here rk is not a
constant (but dependent of k). For any real ξ and T →∞ ,
an agent goes to the k-th restaurant with probability pk(t)

k kr rξ ξ= ∑ . The results for such a strategy can then be
derived as follows:

If an agent selects any restaurant with probability p
then probability finding a single restaurant chosen by m
agents is given by
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Therefore, the probability that any restaurant with rank
k is not chosen by any of the agents will be given by
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Fig. 2: The main figure shows average fraction of utilization (f–k) versus
rank of the restaurants (k) for different ξ values. The inset shows the
distribution ( )kD f f N= ∑  of the fraction f agent getting dinner any
evening for different ξ values.

Hence
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Therefore, the average fraction of agents getting food
any evening (day) in the k-th ranked restaurant is given by

1 ( 0) .k kf m= − Δ = (7)

Fig. (2) shows the numerical estimates of  f–k . For ξ
= 0, the problem reduces to the random choice case (as
considerd in 2:2:1) and one gets  f–k = 1 – e–1, giving

0.63kf f N= ∑ −% . For ξ = 1, we get  f–k = 1 – e–2k/N,

giving 0.58kf f N= ∑ −% 2.

C. Strict Crowd-avoiding Case : We consider here
the case where each agent chooses on any evening (t)
randomly among the restaurants in which nobody had
visited in the last evening (t – 1). This is the case where ξ
= 0 and T → 0 in Eq. (1). Numerical simulation results
for the distribution D(f) of the fraction f of utilized
restaurants is Gaussian with a most probable value at

0.46f −% . This can be explained in the following way: As
the fraction f– of restaurants visited by the agents in the
last evening is completely avoided by the agents this
evening, so the number of available restaurants is N(1 –
f–) for this evening and is chosen randomly by all the
agents. Hence, when fitted to Eq. (2) with λ = 1/(1 –  f–).
Therefore, following Eq. (2), the equation for  f can be
written as

1(1 ) 1 exp .
1

f f
f

⎡ ⎤⎛ ⎞
− − − =⎢ ⎥⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦
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By solving above equation, we get 0.46f −% . This
result is well fitted with the numerical results for this limit
(xi = 0, T → 0)2.

D. Stochastic Crowd Avoiding Case : Let the
strategy be the following: if an agent goes to restaurant k
in the earlier day (t – 1) then the agent will go to the
same restaurant in the next day with probability

1( )
( 1)k

k
p t

n t
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−
 and to any other restaurant ( )k k′ ≠  with

probability 
( )1 ( )

( )
( 1)

kp t
pk t
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−
′ =

−
 . Numerical results for this

stochastic strategy show the average utilization fraction f–

to be around 0.80 and the distribution D(f) to be Gaussian
peaked around f –~ 0.8 as shown in Fig. II.3.

An approximate estimate of the average utilization
ratio f– for this strategy in steady state may proceed as
follows: Let ai(t) denote the fraction of restaurants having
exactly i agents (i = 0; ... ; N) visiting on any evening (t)
and assume that ai(t) = 0 for i ≥ 3 at any (large enough) t,
as the dynamics stabilizes in steady state. So,
a0(t)+a1(t)+a2(t) = 1, a1(t)+2a2(t) = 1 for any (large enough)
t. Hence a0(t) = a2(t). Now a2(t) fraction of agents will
make attempts to leave (each with probability 1/2) their
respective restaurants in the next evening (t + 1), while no
activity will occur on the restaurants where, only one came
(a1) in the previous evening (t). These a2(t) fraction of
agents will get equally divided (each in the remaining N –
1 restaurants). Of these a2(t), the fraction going to the
vacant restaurants (a0 in the earlier evening) is now
a0(t)a2(t). Hence the new fraction of vacant restaurants at
this stage of consideration will be a0(t) – a0(t)a2(t). In the
restaurants having exactly two agents (a2 fraction in the
last evening), some vacancy will be created due to this
process in steady state, and this fraction will be equal to

2 2
2

( ) ( )
( )

4 4
a t a t

a t− . In the steady state, where ai(t +1)=ai(t)

= ai for all i and t, we get 2 2
0 0 2 2 04 4

a a
a a a a a− + − = .

Hence using a0 = a2 we get a0 = a2 = 0.2, giving a1 = 0:6
and f– = a1 + a2 = 0.8 in the steady state. The above
calculation is approximate as none of the restaurant is
assumed to get more than two costumers on any day (ai =
0 for i ≥ 3). The advantage in assuming only a1 and a2 to
be non-vanishing on any evening is that the activity of
redistribution on the next evening starts from a2 fraction
of the restaurants only. This of course affects a0 and a1
for the next day and for steady state these changes will
balance. Numerically we checked that ai ≤ 0:03 for i  ≥ 3

and hence the above approximation does not lead any
serious error3.

FIG. 3: Plot shows the numerical simulation results for a typical
prospective customer distribution on any evening.

Phase Transition in KPR Problem

Here we will discuss the general problem with N
restaurants and gN agents, where the fractional density g
is a fixed external parameter of the dynamics. Recasting
the problem in terms of zero-range interacting particles,
we observe a phase transition from a frozen phase with all
satisfied agents (and therefore not moving away from the
earlier choice of the respective restaurants) to an active
phase with unsatisfied ones at a critical density gc

3.
Extensive numerical simulations as well as some analytical
calculations were performed to understand its features,
finding a good agreement with the exponents of stochastic
fixed-energy sandpiles. The behavior of the relaxation
properties of the frozen phase reveals an interesting faster-
is-slower effect. The study consists of the general
observation that a high level of coordination can arise
spontaneously from strategies which involve rather slower
dynamics, which however speed up the approach to overall
optimization or utilization and individual performance.

The Models : Inspired by the results for the problem
with N agents competing for N restaurants (each can serve
food to one person per day), we will discuss a more generic
and generalized stochastic occupation problem with
exclusion.

The rank ordering among the restaurants is
disregarded and we consider in general gN agents, where
the density g (the ratio between total number of agents
and total number of restaurants), can be taken as an external
parameter of the dynamics. For brevity, we refer to
individuals as particles and restaurants as the sites or nodes
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of an underlying network. In these terms the original
problem is defined on a fully connected graph.

A particle (or agent) moves from the site (restaurant)
i to a randomly chosen neighboring site (or restaurant) j
with a rate v(ni) that depends on the number (ni) of particles
that are present at it. This can be mapped to a zero range
process8 which allows us to say that the stationary
probability distribution of the number of particles per site
can factorize in terms of single site functions. Given the
nature of the problem, we will discuss models having the
jumping rate v(1) = 0 for single occupancy, i.e., agents are
happy while alone, and v(n + 1) ≥ v(n), i.e. the particles
repel each other (crowd avoiding). Given this definition
for the rates, at low densities (g < 1) there are sites filled
by single particles. But for high densities (g > 1) a finite
fraction of sites – so called ‘active’ sites – have multiple
occupancy. It has been shown8 that there is a transition
between these two phases that appears at a certain density
gc ≤ 1. Note that, in principle, this state is ergodic and
hence every configuration of it is accessible. Therefore,
for g ≤ 1, the process sooner or later visit a state where ni
≤ 1 for all sites and the dynamics stops (absorbing state).
When N is sufficiently large and g > gc, most sites become
active (n > 1). The order parameter is defined as the steady
state density of active sites ρa (density of sites having n >
1). Therefore the absorbing phase conforms to ρa = 0,
whereas above some density gc the steady state appears
with a non-zero value of the order parameter (ρa > 0).

We will discuss in particular two models:

(A)
1( ) 1v n
n

= −

(B) v(n) = (1 – p)θ(n – 1).

We use the parallel dynamics having a simultaneous
update of the sites (or restaurants) at each time step, i.e.
agents’ actions are simultaneous akin to a repeated game

problem. Similarly for a sequential update, in which at each
time step, a randomly chosen particle jumps with some
probability.

The model A is implementation of the stochastic
crowd avoiding strategy of the original KPR problem. If
the site k has nk ≥ 1 particles, each particle stay back with
probability 1/nk in the next time step, otherwise it jumps
to any of the neighboring sites randomly (see numerical
results shown in Figs. III.4 & III.5).

In the model B an external parameter p is proposed
that represents the “patience” of costumers to overcrowded
conditions. The dynamic is following if the site k has nk
≥ 1 particles, each particle stays with probability p in the
next time step, otherwise it will jump to any of the
neighboring sites randomly.

The model B is similar to a kind of fixed energy
sandpile, but the study of its dynamics as a function of the
parameter p will acknowledge an interesting faster-is slower
effect related to the relaxation time of the frozen state.

Finally a waiting choice will be pointed out that can
be rational from the point of view of game theory: the
agents in overcrowded restaurants could wait simply
because they expect that others are leaving them alone.

Results from Numerical Simulations : The times
required to reach the steady state below and above gc are
measured. The order parameter ρa for below gc reaches a
value ρa = 0 in the steady state. For g > gc, order parameter
ρa gets to a stationary state and fluctuates around a mean
value 0 ( 0)aρ > . The system has persistent dynamics in this
case. The growth of the order parameter is exponential
away from gc, and can be asserted as

0 /( ) 1 t
a at e τρ ρ −⎡ ⎤= −⎣ ⎦ (8)

Fig. 4: Simulation results for model (A) in mean field case with estimated gc = 0.7502 ± 0:0002. (a) Variation of steady state density ρa of active
sites versus g – gc, fitting to β = 0.98 ± 0.02. The inset shows the variation of ρa with density g. (b) relaxation to absorbing state near critical point
for different system sizes, the inset showing the scaling collapse giving estimates of critical exponents α = 1.00 ± 0.01 and z´ = 0.50 ± 0.01. (c)
Scaling collapse of ρa(t). The inset shows the variation of ρa(t) versus time t for different densities g. The estimated critical exponent is ν|| = 1:00
0:01. The system sizes N are mentioned. Taken from8. (Permission to use the figure from the paper is given by American Physical Society)
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Fig. 5: Simulation results for 2-d case in model (A) with estimated gc = 0.8827 ± 0.0002. (a) Variation of steady state density ρa of active sites
versus g – gc, fitting to β = 0.68 ± 0.01. The inset shows the variation of ρa with density g. (b) relaxation to absorbing state near critical point for
different system sizes, the inset showing the scaling collapse giving estimates of critical exponents α = 0.42 ± 0.01 and z = 1.65 ± 0.02. (c) Scaling
collapse of ρa(t). The inset shows the variation of ρa(t) versus time t for different densities g. The estimated critical exponent is ν|| = 1.24 ± 0.01.
The simulations are done for square lattices of linear size L (N = L2). Taken from8. (Permission to use the figure from the paper is given by
American Physical Society)

for g > gc, and

/( ) t
a t e τρ −∝ (9)

for g < gc, where τ is time scale of the relaxation. We are
going to denote the asymptotic value of the order parameter
as ρa hereafter. Close to the critical point (g – gc → 0+),

find ( )~a cg g
β

ρ −  where β is the exponent of order

parameter, and ( ) ||~ cg g
ν

τ
−

−  . Typically ρa(t) obeys a
scaling form

||( ) ~ ; ~ ( ) ~ ,z
a c

tt t F g g Lναρ τ
τ

−− ⎛ ⎞ −⎜ ⎟
⎝ ⎠

(10)

where α and z are the dynamic exponents and L stands for
size of the system. Then we get ||β ν α=  by comparing
Eq. (8), Eq. (9) and Eq. (10) when t/τ is a constant for
t →∞ . Numerically the time variation of ρa(t) is studied
and measure the exponents by fitting with above scaling
relation.

Model A : Mean Field case : For the mean field
case, a systems of N = 106 sites is considered, averaging
over 103 initial conditions. It is found gc = 0.7502 ± 0002.
Using scaling fitting of ρa(t) for different g values (see
Fig. 4) give β = 0.98 ± 0.02, z´ = 0.50 ± 0.01 (assuming
N = L4 and using Eq. (10), a relation z = 4z´ is got and
therefore z = 2.0 ± 0.04), ν|| = 1.00 ± 0.01, α = 1.00 ±
0.01. And these independently estimated exponent values
satisfy the scaling relation ||β ν α=  well.

Lattice cases : The same dynamics in 1-d and 2-d
are studied. For a linear chain in 1-d, N = L = 104 is taken
and averaged over 103 initial conditions. For 2-d a square
lattice (N = L2) with L = 1000 is considered and averaging
over 103 initial conditions. Periodic boundary condition are
applied in both cases.

(a) The 1-d model is following: The particles can hop
only to their nearest neighbor sites, and each
particle will choose either left or right neighbor
randomly. Here gc = 1 is found and hence the
phase transition is not interesting.

(b) In the 2-d version of the model, a square lattices
is considered and the particles choose one of the
4 nearest neighbors randomly. For N = 1000 ×
1000, gc = 0.88 ± 0.01, β = 0.68 ± 0.01, z = 1.65
± 0.02, ν|| = 1.24 ± 0.01 and α = 0.42 ± 0.01
(Fig. III.5). However these independently estimated
exponent values do not fit very well with the
scaling relation ||β ν α=  but this type of scaling
violation was also observed in many active-
absorbing transition cases.

Model B : Mean field case : For the mean field case,
N = 106 is taken, averaging over 103 initial condition.
Numerically the phase diagram is investigated and the
universality classes of the transition. In mean field case,
the phase boundary looks to be linear starting gc = 1/2 for
p = 0 and ending at gc = 1 for p = 1 (Fig. 6), obeying

1
2

(1 )cg p= + . In this case, for p = 0, it is found the critical
point to be gc = 1/2, and this is similar to the fixed energy
sandpiles. Along the phase boundary, the critical exponents
are the same and they are matching with those of model
A.

Lattice cases : The same dynamics is studied in 1-d
and 2-d. For a linear chain in 1-d, here also N = L = 104

is taken and average over 103 initial condition. For 2-d,
1000 × 1000 square lattice with L = 1000 is considered
and averaging over 103 different initial conditions.

(a) For 1-d, for the case p = 0, it is observed gc =
0.89 ± 0.01, with β = 0.42 ± 0.01, z = 1.55 ±
0.02, ν|| = 1.90 ± 0.02 and α = 0.16 ± 0.01 (Fig.
7). The phase boundary in (g, p) is nonlinear
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starting from gc = 0.89 ± 0.01 at p = 0 (Fig. 7) to
p = 0.43 ± 0:03 at g = 1 (Fig. 6). Therefore, we
can independently define a model at unit density
(g = 1) and determine the critical probability pc
for which the system goes from an active to an
absorbing state.

(b) For 2-d, for the case p = 0, it is observed gc =
0.683 ± 0.002, with β = 0.67 ± 0.02, z = 1.55 ±
0.02, ν|| = 1.20 ± 0.03 and α = 0.42 ± 0.01. The
phase boundary looks nonlinear, from gc = 0.683
± 0.002 for p = 0 (Fig. 6) extending to gc = 1 at
p = 1.

KPR Strategies on City Size Distribution
Modeling

The KPR problem can serve as a model for city
growth and organization, where the cities correspond to

restaurants and the city population to the customers, who
choose to stay or migrate according to the fitness of the
cities15.

Model : In the usual KPR framework of N agents
and R restaurants, we take here in the following R = N for
the sake of simplicity. We assume that each restaurant i
has a characteristic fitness pi drawn from a distribution
Π(p). The entire dynamics of the agents is defined by p.
The concept of time is similar in the case of cities in the
sense that people make choices at a certain time scale.
Agents visiting a restaurant i on a particular evening t return
on the next evening t +1 with probability pi, or otherwise
go to any other randomly chosen restaurant. We consider
the dynamics of the agents to be simultaneous.

In terms of cities, we can re-cast the model as follows:
every city has some fitness and initially people are
randomly distributed among the cities. At any point of time,
some people will be satisfied in a city and others will not
be satisfied by its services. According to our model, the
unsatisfied people will shift randomly to any other cities.
The same dynamics happens for other cities too. Therefore
at every time step (which can of the order of days or
months) cities may lose some people and may also gain
some people. We consider different types of fitness
distribution and observe the population distribution for the
cities.

The fitness parameter above is a proxy for a generic
city index, which can be any intrinsic property such as the
measure of wealth, economic power, competitiveness,
resources, infrastructure etc. or a combination of many of
these. It is important to note at this point that we are using
the restaurant model (KPR) paradigm to model the
distribution of sizes of urban agglomerations (cities), where
migration between cities is modeled by the movement of
agents across restaurants.

Fig. 7: Simulation results for the case p = 0 in 1-d, gc = 0.892 ± 0.001. (a) Variation of steady state density ρa of active sites versus g – gc, fitting
to β = 0.42 ± 0.01. The inset shows the variation of ρa with density g. (b) relaxation to absorbing state near critical point for different system sizes
L, the inset showing the scaling collapse giving estimates of critical exponents α = 0.15 ± 0.01 and z = 1.40 ± 0.02. (c) Scaling collapse of ρa(t).
The inset shows the variation of ρa(t) versus time t for different densities g. The estimated critical exponent is ν|| = 1.90 ± 0.02. The simulations are
done for linear chains of size L (= N). Taken from8. (Permission to use the figure from the paper is given by American Physical Society).

Fig. 6: Phase diagram for the generalized model in the (g, p) plane,
showing the phase boundaries separating the active and absorbing phases
in 1-d, 2-d and mean field cases. The active phases are on the right of
the phase boundaries while the absorbing phases are on the left in the
respective cases. The system sizes are N = 105 for mean field, 1000 ×
1000 for 2-d, and 104 for 1-d. Taken from8. (Permission to use the
figure from the paper is given by American Physical Society)
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Results : Distribution of sizes : Let us consider the
case when pi is uniformly distributed in [0, 1), i.e, Π(p) =
1. In practice, we use a natural cutoff for p as 1 – 1/N.
The probability density of the number of agents s at a
particular restaurant P(s) has a broad distribution, and in
fact is a power law for most of its range, but has an
exponential cutoff:

( )( ) ~ expP s s s Sν− − (11)

where S is a constant which determines the scale of the
cutoff. The exponential cutoff is an artifact of the upper
cutoff in Π(p). The power law exponent is ν = 2.00(1) as
measured directly from the fit of the numerical simulation
data (Fig. IV 8).

Fig. 8: The probability density P(s) for fraction of restaurants with s
agents. The data is shown for dierent system sizes N = 28; 29; 210; 211;
212; 213; 214; 215. The power law exponent is compared with s–2. Taken
from3. (Permission to use the gure from the paper is given by American
Physical Society)

Let ai(t) denote the number of customers on the
evening t in the restaurant i characterized by fitness pi in
the steady state. So, ( )i ia t N∑ = . Let n´ denote the
average number of agents on any evening who are choosing
restaurants randomly. Then, for a restaurant i, ai(t)pi agents
are returning to restaurant i on the next evening, and an
additional n´/N agents on the average additionally come to
that restaurant. This gives

( 1) ( ) / ,i i ia t a t p n N′+ = + (12)

where ia  would now denote the average quantity. In the

steady state, we have ( 1) ( )i i ia t a t a+ = =  and hence

(1 )i i
na p
N
′

− = (13)

giving

1
1i

i

na
N p
′

=
− , (14)

These calculations hold for large pi (close to 1) which
give large values of ai close to ia . Thus, for all restaurants,

1
1i

ii i

na N
N p
′

= =
−∑ ∑

2

1
1i

i

Nn

p

′⇒ =
∑

−

 . (15)

Now, let us consider a case of Π(p) = 1, where pi =
1 – i/N for i = 1, 2, ... , N. Thus,

1 ln( 1)i i

N Nn
N

′ = ≈
+∑ (16)

for large N. One can numerically compute P(s) for this
particular case and the computed value of the cutoff in
P(s) which comes from the largest value of pi which is p1
= 1 – 1/N, and it agrees nicely with the estimate, Eq. 16.

One can derive the form of the size distribution P(s)
easily. Since, R.H.S. of Eq. (13) is a constant (= C, say),
dp = da/a2 = ds/s2, since ai being the number of agents in
restaurant i denotes nothing but the size s. An agent with a
particular fitness p ends up in a restaurant of characteristic
size s given by Eq. (13), so that one can relate Π(p)dp =
P(s)ds. Thus,

( )
2

1
( ) ( ) .

C
sdpP s p

ds s

∏ −
= ∏ = (17)

Fig. 9: The probability density P(s) for fraction of restaurants with s
agents, for different distributions Π(p) = (1 + δ)(1 – p)δ, with δ = – 0.5,
0, 1.0. The power law exponents agree with ν = 2 + δ. The data are
shown for N = 213. Taken from15. (Permission to use the figure from
the paper is given by American Physical Society)
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Thus, for an uniform distribution Π(p) = 1, P(s) ~ s–2 for
large s. It also follows that for Π(p) = (1 + δ) (1 – p)δ,
one should get

(2 )( ) ~ , with 1P s s δ δ− + − < < ∞ . (18)

Thus ν does not depend on any feature of (p) except
on the nature of this function near p = 1, i.e., the value of
δ, giving ν = 2 + δ. Fig. 9 compares the numerical
simulation results for Π(p) = (1 + δ) (1 – p)δ and there is
indeed an agreement with ν = 2 + δ (for more details15).

KPR Strategies on Minority Game Problem

The minority game (MG) is a simple two choice game
played between N players, where the players are required
to make a choice between two options at each step. The
players ending up in the minority, i,e, choice with fewer
people, receive a fixed positive pay off. The number of
agents is an odd number, so that at all steps one group
belong to the minority. This is a variant of the El Farol
bar problem. Like the El Farol bar problem, the agents are
required to make independent and parallel decisions. The
pay-off in the MG received by the minority population,
does not depend on the number of people in the minority.
Hence a ‘socially effcient’ system is the one where the
populations are divided among the two choices almost
equally, i.e. sufficiently close to (N – 1)/2. It is also
important, however, that such a division is reached in a
finite time (as opposed to, say, the 2N order scale, which
will sample eventually all configurations). A random choice
at each step will get rid of the convergence time problem,
which will be effectively 0, but the fluctuation in the
population in each choices will scale as √(N). This is a
highly ineffcient strategy in terms of resource utilization,
since a considerable number of agent could still be
accommodated in the minority. Several adaptive strategies
have been studied45 in order to reduce this fluctuation and
to make the system more effcient. However, the most
complex strategies could not change the scaling of the
fluctuation, but could only reduce the pre-factor in the
scaling. Therefore, a significant resource misuse is likely
in these strategies.

In a similar way, stochastic strategies were also used
in the MG problem in7. Here the stochastic crowd avoiding
strategy of the KPR problem was used for the MG. The
fluctuation could be made arbitrarily small and this could
be achieved in log log N time. In terms of resource
utilization, this strategy performs best. However, there are
some significant differences with the classical MG problem

and this case. Particularly, in the classical MG the agents
know only if they were in the majority or minority at each
step. In this case, however, they are supplied with the
information regarding the difference of population among
the two choices as well.

In this section we will deal with question if this
additional information regarding the excess population in
the majority is indeed essential in reaching a low fluctuation
state in the MG problem within a small time26. As a first
step, the excess crowd size is guessed by the individual
agents and are not supplied to them exactly. It can be
shown that as long as the guess value is not too far from
the actual value, the strategy still works. When the guess
values are different among individual agents and they also
vary in each time step, the minimum fluctuation is still
reached as long as the average value of the guess is not
far from the actual value. In fact, a continuous transition
can be seen in the resource utilization depending on the
accuracy of the guess of the crowd. In the end we will
also discuss the more realistic case of incorporating some
random traders as well.

Strategy of the Agents : In the case of the KPR
strategy being applied to the MG problem in7, the agents
in the majority shift with the probability

( ) ,
( ) 1
tp

M t+
Δ

=
+ Δ + (19)

and the agents in the minority remain with their choice (p–
= 0). The total population (N = 2M + 1) is divided between
the two choices as M + Δ(t) + 1 and M – Δ(t) with Δ(t) =
(|NA(t) – NB(t)| – 1)/2, where NA(t) and NB(t) are the
populations in the two choices at time t. Following this
strategy, the agents can reach the zero fluctuation limit in
log log N time7. Therefore, the resource utilization is
maximum in that case. However, its distribution is highly
asymmetric in the sense that after the dynamics stops in
the Δ(t) = 0 limit, the agents in the minority (majority)
stay in their place for ever; hence, only one group always
benefits. Other than that, in this strategy the knowledge of
Δ(t) is made available to all the agents, which is not in
general the case for the classical version of the MG.

In the following discussions, we will go through
several variants of the above mentioned strategy. Primarily
we will discuss the possibilities to avoid the freezing of
the dynamics while keeping the fluctuation as low as
possible. We then discuss if it is possible to achieve the
small fluctuation states without knowing the magnitude of
Δ(t).
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Uniform Approximation in Guessing the Excess
Crowd : We consider the case where the agents know the
value of Δ(t). Our intention here is to find a strategy where
the dynamics of the game does not stop and the fluctuation
can be made as small as required.

To do that consider the following strategy: The
shifting probability of the agents in majority is

( )( ) ,
( ) 1
tp t

M t+
′Δ

=
′+ Δ + (20)

[where ( ) ( )t G t′Δ = Δ  and G is a constant] and as before
the minority remains with their choice in the following step.
A steady state is reached in this model where the fluctuation
is arbitrarily small.

Steady-state behavior : To understand when such a
steady state value is possible, note that when the transfer
of the crowd from majority to minority is twice the
difference of the crowd, the minority then will become the
majority and will have the same amount of excess people
as before. Quantitatively, if the initial populations were M
+ Δ and M – Δ roughly, and if 2Δ people are shifted from
majority to minority, then the situation would continue to
repeat itself, as the transfer probability solely depends on
the excess crowd. Clearly, this is possible only when G >
1. Formally, if the steady-state value of Δ(t) is Δs, then the
steady state condition requires

( )1 2 .
1

s
s s

s

G
M

M G
Δ

+ Δ + = Δ
+ Δ + (21)

Simplifying this, one gets either Δs = 0 or

2 ( 1).s
G M

G
−

Δ = + (22)

For G < 2(= Gc), Δs = 0 would be the valid solution,
since the above equation predicts a negative value for Δs,
which indicated no steady-state saturation. Therefore, there
is an active-absorbing type phase transition46 by tuning the
value of G. When 0 < G < 2, the system reaches the
minimum fluctuation state where Δ(t) = 0 and the dynamics
stops (the dynamics will differ qualitatively for G < 1 and
G > 1). For G > 2, however, a residual fluctuation remains
in the system, keeping it in the active state. This could be
interpreted as, until the guessed value of the crowd is not
too incorrect (twice as large), the agents can still find the
minimum fluctuation state. However, when the guess
becomes too far away from the actual value, a fluctuation
remains in the system.

For this phase transition, it is now possible to define
an order parameter for the problem as O(t) = Δ(t)/M and
its saturation values behaves as Os = 0 when G < 2 and
when M >> 1, for G > 2, with Os = (G – Gc)/G giving the
order parameter exponent β = 1 for this continuous
transition. In Fig. V.10 the results of the numerical
simulation (M = 105) as well as the analytical expression
for the order parameter are shown.

Fig. 10: Steady state values of the order parameter Os are shown for
different values of G and x. The solid lines show the analytical results
for the pure and annealed disordered cases. Both match very well with
the simulation points. Inset shows the log-log plot near the critical point
for the disordered case, confirming β = 1:00 ± 0:01. All simulation data
are shown for M = 105. Taken from9. (Permission to use the gure from
the paper is given by American Physical Society)

Dynamics of the system : When the excess crowd is
known to each agents, it is possible to calculate the time
dependent behavior of the order parameter both at and
above the critical point. Let at an instant t, the populations
in the two choices A and B are NA(t) and NB(t) respectively
with NA(t) > NB(t). Therefore, by definition

( ) ( ) 1
( ) .

2
A BN t N t

t
− −

Δ = (23)

The amount of the population to be shifted from A to
B using this strategy would be

( )( ) ( ( ) 1)
( ) 1

G tS t M t
M G t

Δ
= + Δ +

+ Δ + (23)

( ) ,G t≈ Δ (24)

when Δ(t) is small compared to M, i.e., when G is close to
Gc or for large time if G ≤ Gc.

Clearly, NA(t + 1) = NA(t) – S(t) and NB(t + 1) =
NB(t) + S(t), giving (where we assume population inversion)

( 1) ( 1) 1
( 1)

2
B AN t N t

t
+ − + −

Δ + =
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( ) ( ) 1 .G t t≈ Δ − Δ − (25)

Therefore, the time evolution of the order parameter
can be written as

( ) 1(2 ) ( ) .dO t G O t
dt M

= − − − (26)

Neglecting the last term and integrating,

[ ]( ) (0)exp (2 ) .O t O G t= − − (27)

The above equation signifies an exponential decay of
the order parameter for the subcritical region (1 < G < 2).
It also gives a time scale τ ~ (Gc – G)–1 which diverges as
the critical point is approached. These are also confirmed
by the numerical simulations.

In Eq. (24), the leading order term was kept only. If,
however, the next term is kept, the expression becomes

( )2 2 21( ) ( ) ( ) ( ) .S t G t G t G t
M

≈ Δ − Δ − Δ (28)

The time evolution equation of the order parameter
then reads

2( ) 1(2 ) ( ) ( 1) ( ) .dO t G O t G G O t
dt M

= − − − − − (29)

Now, for the dynamics exactly at the critical point,
i.e., G = 2, the first term in the right-hand-side is zero.
The last term can be neglected, giving the order parameter
as

(0)( ) .
2 (0) 1

OO t
O t

=
+ (30)

In the long time limit O(t) ~ t–1, giving δ = 1.

Therefore we see that under this approximation, the
usual mean field active-absorbing transition exponents are
derived. These exponents are also obtained using the
numerical simulations.

Effect of Random Traders : According to the
strategies mentioned above, if the excess population is
known to the agents (which in this case is in fact a measure
of the stock’s price) the fluctuations can have arbitrarily
small value. However, in real markets, there are agents who
follow certain strategies depending on the market signal
(chartists) and also some agents who decide completely
randomly (random traders). Here we discuss the effect of
having random traders in the market, while the rest of the
populations follow the strategies mentioned above.

Single Random Trader : When a single random trader
is present, even when Δ(t) = 0, that trader would choose
randomly between the two choices for the following steps
irrespective of  whether he or she is in the minority or
majority. This will create a changeover between majority
and minority with an average time of two time steps. In
this way, the asymmetry in the resource distribution can
be avoided completely. However, that single agent will
always be in the majority.

More than One Random Traders : As is discussed
before, when all agents follow the strategy described by
Eq. (19), after some initial dynamics, Δ(t) = 0 implying
that they do not change side at all. However, with a single
random trader, in an average time period 2, as he or she
selects alternatively between the two choices, the rest of
the population is divided equally between the two choices
and it is the random trader who creates the majority.
However that trader is always a loser. This situation can
be avoided when there is more than one random trader. In
that case, it is not possible always to have all of them in
the majority. There will be some configurations where some
of the random traders are in the minority, making their
time period of wining to be 2 (due to the symmetry of the
two choices). The absorbing state (for G < Gc), therefore,
never appears with random traders, though the fluctuation
becomes non-zero for more than one random traders.
However, if the number of random traders (= pN, where p
is the fraction of random traders) is increased, the
fluctuation in the excess population will also grow
eventually to N1/2(see Fig. V 11). Therefore, the most
effective strategy could be the one in which (i) the
fluctuation is minimum and (ii) the average time period of
gain will be 2 for all the agents, irrespective of the fact
whether they are random traders or chartists. These two
are satisfied when the number of random traders is 2.
Furthermore, if one incorporates the random traders in the
strategy with partial knowledge of the excess crowd, a state
of very small fluctuations can still be reached.

Conclusion and Discussion

In KPR problem each agent makes decision in each
day t independently and is based on the information about
the rank k of the restaurants and their previous day
prospective customer crowd size given by the numbers nk(t
– 1) . . . nk(0). Here we discussed the several stochastic
strategies where each agent chooses the k-th ranked
restaurant with probability pk(t) described by Eq. (1). The
utilization fraction fk of the k-th ranked restaurants on every
evening is found and their average (over k) distributions
D(f) are shown in Fig. II.2 for some special cases.
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Numerically we find their distributions to be Gaussian with
the most probable utilization fraction 0.63,f −%  0.58 and
0.46 for the cases with α = 0, T → ∞ ; α = 1, T → ∞ ;
and  α = 0, T → 0 respectively. For the stochastic crowd-
avoiding strategy, we get the best utilization fraction f −%
0.8. The analytical estimates for f  for the stochastic
crowd-avoiding strategy agree very well with the numerical
observations. In all these cases, we assume N´ = N, that is
the number of choices for each of the N agents is the same
as the number of agents or players. All the stochastic
strategies, being parallel in computational mode, converge
to solution at smaller time steps (~ √N or weakly dependent
on N) while for deterministic strategies the convergence
time is typically of order of N, which is useless in the
truly macroscopic (N → ∞ ) limits. However, deterministic
strategies are useful for small N and rational agents can
design appropriate punishment schemes for the deviators.

The KPR problem has a dictated solution that leads
to one of the best possible solution to the problem, with
each agent getting his dinner at the best ranked restaurant
with a period of N days, and with best possible value of
f (= 1) starting from the first evening itself. However the

parallel decision strategies (employing evolving algorithms
by the agents, and past informations, e.g., of n(t)), which
are necessarily parallel among the agents and stochastic
(as in democracy), are less efficient ( f  << 1; the best one
the stochastic crowd-avoiding strategy, giving f −%  0.8
only). We note that most of the “smarter” strategies lead
to much lower efficiency or less utilization. Next we have
discussed how a KPR strategy gives rise to a phase
transition from an active to a frozen phase, as the density
varies. We have considered that gN agents are competing
among themselves to get the best service from N equally

ranked restaurants. In the original KPR problem, where
density g = 1 is far from its critical value gc, the relaxation
time τ, given by Eq. (10), never showed any system size L
= N1/d dependence. These models are recast in terms of
zero-range interacting particles in order to have analytical
insights on the systems’ behavior. For g ≤ 1, absorbing
configurations are present, and that can be reachable or
not, depends on the basic dynamics. The existence of a
critical point gc is found above which the system is unable
to reach frozen configurations. When the agents are moving
if and only if they are competing with other agents (model
B) with p = 0, they could not reach satisfactory
configurations if the density is above gc = 1/2. When the
agents wait longer (higher p) speed up the convergence,
increasing gc and decreasing the time to reach steady
configurations (faster-is-slower effect). The phase transition
is numerically investigated in finite dimensions finding a
good agreement with the exponents of stochastic fixed-
energy sandpile.

We model city growth as a Kolkata Paise Restaurant
Problem problem, specifically in the context of city size
distributions. Zipf law for city size distribution can be
thought to be a consequence of the variation in the quality
of available services, which can be measured in terms of
various amenities. We argue that this measure can be
characterized by an intrinsic fitness. We make a
correspondence from the population in cities to the number
of customers in restaurants in the framework of the Kolkata
Paise Restaurant problem, where each restaurant is
characterized by an intrinsic fitness p similar to the
difference in the quality of services in different cities. We
showed the size distributions, and the exact value of the
utilization fraction for the case when choices are made
independent of fitness. Results for the case with uniform
fitness are also reported. When fitness is uniformly
distributed, it can give rise to a power (Zipf) law for the
number of customers in each restaurant.

In the stochastic strategy minority game, a very
efficient strategy is the one described by Eq. (19), where
the agents very quickly (in log log N time) get divided
almost equally (M and M + 1) between the two choices.
This strategy guarantees that a single cheater, who does
not follow this strategy, will always be a loser7. However,
the dynamics in the system stops very quickly, making the
resource distribution highly asymmetric (people in the
majority stays there for all subsequent choices) thereby
making this strategy socially unacceptable. We then
discussed several modications in the above mentioned
strategy to avoid this absorbing state. The presence of a
single random trader (who picks between the two choices

Fig. 11: The saturation values of Os are plotted against G for different
fractions p of the random traders. M = 106 for the simulations. Taken
from9. (Permission to use the figure from the paper is given by American
Physical Society)
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completely randomly) will avoid this absorbing state and
the asymmetric distribution will also vanish. However, this
will always make that particular trader a loser. But the
presence of more than one random trader will avoid such
a situation too, making the average time period of switching
between majority and minority for all the traders
(irrespective of whether they are chartists or random
traders) to be 2. We also show that by varying a parameter,
the agents can achieve any value of the fluctuation. This is
an active-absorbing type phase transition for which the
critical exponents can also be found analytically, which are
well supported by numerical simulations.
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Appendix A

In this appendix, [A.1-A.14] present the excerpts from
Wolfram Demonstrations, Wikipedia, articles and books,
where Kolkata Paise Restaurant Problem has been discussed
and developed by researches from different international
institutions in social and natural sciences.

FIG. A.1: The entry on Kolkata Paise Restaurant (KPR) Problem in Wolfram Demonstrations Project (website: http://demonstrations.wolfram.com/
Kolkata Paise Restaurant KPR Problem)
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FIG. A.2: Part of the entry on Kolkata Paise Restaurant (KPR) Problem in Wikipedia (as in December 2017; website: https://en.wikipedia.org/wiki/
El Farol Bar problem#Kolkata Paise Restaurant Problem

FIG. A.3: Title, abstract and some excerpts are shown from the44.
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FIG. A.4: Title, abstract and some excerpts are shown from the11.

FIG. A.5: Title, abstract and some excerpts are shown from the47.
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FIG. A.6: Title, abstract and some excerpts are shown from the35.

FIG. A.7: Title, abstract and some excerpts are shown from the42.



22 SCIENCE AND CULTURE, JANUARY-FEBRUARY, 2018

FIG. A.8: Title, abstract and some excerpts are shown from the40.

FIG. A.9: Title, abstract and some excerpts are shown from the12.



VOL. 84, NOS. 1–2 23

FIG. A.10: Title, abstract and some excerpts are shown from the36.

FIG. A.11: Title, abstract and some excerpts are shown from the41.
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FIG. A.12: Title, abstract and some excerpts are shown from the39.

FIG. A.13: Title, abstract and some excerpts are shown from the37.
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FIG. A.14: Title, abstract and some excerpts are shown from the31.
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