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KOLKATA PAISE RESTAURANT (KPR) PROBLEM

ASIM GHOSH!*

AND SUDIP MUKHERJEE?3f

The Kolkata Paise Restaurant (KPR) problem is a repeated game, played between a large number
N of agents having no interaction with each other. In the KPR problem, the customers or agents
choose from N restaurants each day simultaneously in parallel decision mode. The problem was
created in 2007 by B. K. Chakrabarti. In this review article, we will briefly discuss the strategies
developed for KPR problem and also the problems where KPR strategies were applied. In the
appendix section, we display the articles and books where Kolkata Paise Restaurant problem was
appeared in their citation lists by the scientists outside from Kolkata.

Introduction

he Kolkata Paise Restaurant (KPR) problem is

repeatedly played among a large number N of

agents or players having no interaction amongst
themselves. The agents or players choose from N’
restaurants each evening independently (N < N). In the
problem the prospective customers or players each have
the same set of data regarding the success or failure of the
various restaurants: the data set gives the number of
prospective customers arriving at each restaurant for the
past evenings. Let us assume that the price for the meal to
be the same for all the restaurants though the customers
can have a ranking of preference for each restaurant (agreed
upon by all customers). For simplicity we also assume that
each restaurant can serve only one customer any evening.
As already mentioned, information about the customer
distributions for earlier evenings is available to everyone.

Each customer will try to go to the restaurant with
the highest possible rank while avoiding the crowd so as
to be able to get dinner there. If any restaurant is chosen
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by more than one customer on any evening, one of them
will be randomly chosen (each of them is anonymously
treated) and will be served. The rest will not get dinner
that evening. The customers collectively learn from their
attempts in the past, how to avoid the crowd to get the
meal from a high ranking restaurant.

Many years ago, in Kolkata, there were very popular,
cheap and fixed rate “Paise Hotel” that were mostly visited
by the daily workers or laborers coming to the city for
construction works etc. They used to walk (to save the
transport costs) to one of these restaurants for their lunches
during the tiffin time and would miss lunch if they got to a
crowded restaurant. Searching for the next restaurant would
mean failing to report back to work on time! Paise is the
smallest-value Indian coin. There were indeed some well-
known rankings of these restaurants, as some of the
restaurants would offer tastier food items compared to the
others.

A more general example of such a problem can be
when the public administration provides hospitals (and
beds) in every locality but the locals prefer better ranked
hospitals (commonly agreed by everyone) elsewhere. They
would then be competing with other ‘outsiders’ as well as
with the local patients of that locality. Unavailability of
treatment in the over-crowed hospitals may be considered
as lack of the service for those people and consequently
as (social) wastage of service by those unattended hospitals.
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One (trivial or dictator’s) solution to the KPR problem
may be the following: planner (or dictator) requests (or
orders) everyone to form a que and each one is assigned a
restaurant with rank matching the sequence of the person
in the que on the first evening. Then each person will be
told to go to the next ranked restaurant in the following
evening (for the person in the last ranked restaurant will
go to the first ranked restaurant). This shifting process (with
periodic boundary condition) will continue for successive
evenings. We call this dictator’s solution. This is one of
the most efficient solution (with utilization fraction of the
services by the restaurants equal to unity) and the system
achieves this efficiency immediately (from the first evening
itself). However, this cannot be any acceptable solution of
the KPR problem in reality, where each agent takes his or
her own decision (in parallel or democratically) every
evening, based on commonly shared information about past
events. In KPR problem, the prospective customers try to
evolve a learning strategy to get dinners eventually at the
best possible ranked restaurant, avoiding the crowd.
Generally the evolution of these strategies take considerable
time to converge and even then the eventual utilization
fraction is far below unity.

The Kolkata Paise Restaurant (KPR) was first
conceived in an earlier form in 2007! and the present
formation of the problem was made3. After that, several
developments were made (including quantum version of
the KPR problem)*?!. Several reviews and books covering
the KPR problems can be found in the??-2>23-32_ A list of
papers, extending the KPR problem to different social
situations can be found in the®3-**. In this review article,
we will briefly discuss the strategies developed for KPR
problem and also the problems where KPR strategies were
applied. In the appendix section, we display the articles
and books where Kolkata Paise Restaurant problem was
appeared in their citation lists by the scientists outside from
Kolkata.

Stochastic Learning Strategies

Here we are going to discuss the dynamics of a few
(classical) stochastic learning strategies for the KPR
problem, where N agents choose among N’ (let N' = N)
equally priced but differently ranked restaurants every
evening such that each agent tries to get dinner in the best
restaurant (each serving only one customer and the rest
arriving there going without dinner that evening). All agents
are taking similar (but not the same) learning strategies
and assume that each follow the same probabilistic or
stochastic strategy dependent on the information of the past

in the game. We will show that a few of these strategies
lead to much better utilization of the services than most
others.

Suppose an agent chooses the k-th restaurant having
rank r, on any day () with the probability p,(¢) given by

20 %{ £ exp(—@ﬂ :

N n, (t-1)
zzg{rf eXp(——k - ﬂ (1)

1

where n,(f) is the number of agents arriving at the r,-th
ranked restaurant on the t-th day where 7"> 0 is a scaling
(noise) factor and & > 0 is an exponent. Therefore, the
probability of selecting a particular restaurant increases with
its rank 7, and decreases with its popularity in the previous
day (given by the number n,(¢ — 1)). Few properties of the
strategies leading to the above probability are the following:

1
1. For&=0and T —> o, p, (1) =~y corresponds to

the purely random choice case for which the
average utilization fraction is around 0.63, i.e., on
an average the utilization of the restaurants is 63%.

2. For & = 0 and T — 0, the agents still choose
randomly but avoid completely those restaurants
which had been visited in the last evening or day
(n(t — 1)) is non-zero). Thus choose (again
randomly) from the remaining restaurants. Both
analytically and in numerical simulations it seen
that the average utilization fraction f is around
0.46.

These limiting and also some intermediate cases are
given below.

A. Random Choice Strategies : Let us consider the
case with 7= 1 for all £ (restaurants). Suppose there are
AN agents and N restaurants. An agent can select any
restaurant with equal probability. Therefore, the probability
that a single restaurant is chosen by m agents is given by

AN _ 1
A(m)=( Jp'"(l—p)w " op=—
m N
/1m
=——-exp (-4) as N > . 2)
m!

So, the fraction of restaurants not chosen by any
agents is given by A(m = 0) = exp(— A) which implies that
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average fraction of restaurants occupied on any evening is
given by

f=1-exp(-4)=0.63 for 1 =1 3)
for random choice case in the KPR problem®. It may be
noted this value of the resource utilization factor f is
obtained at the very rst evening. The convergence time T

here is therefore zero convergence time.
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Fig. 1: Figure shows the probability distributions of every day utilization
f(f=1 denotes 100% utilization) for dierent strategies. All distributions
are Gaussian shape with peaks at f = 0.63 (random choice),
f=0.58 (simple rank dependent choice) and /= 0.80 (crowed avoiding
choice).

B. Rank Dependent Strategies: Here r, is not a
constant (but dependent of k). For any real £and T — o0,
an agent goes to the k-th restaurant with probability p,(?)
= rlf / > rkg . The results for such a strategy can then be
derived as follows:

If an agent selects any restaurant with probability p

then probability finding a single restaurant chosen by m
agents is given by

N m N-m
A(m) = | P d=-p)y" . 4)

Therefore, the probability that any restaurant with rank
k is not chosen by any of the agents will be given by

4
N N 7
A (m=0)=( ] I-p 3 Pr = k
k 0 ( k) k ZI"E
kS
= exp k~N asN > oo, (5)

where 7, is set equal to & and N:Zivzl rkg :I(I)V ke dk
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Fig. 2: The main figure shows average fraction of utilization (f ) Versus
rank of the restaurants (k) for different & values. The inset shows the

distribution D(f :ka / N) of the fraction f agent getting dinner any
evening for different & values.

Hence

g
rg(E+1)
A, (m=0)=exp| —*—"—21.
k NG (6)
Therefore, the average fraction of agents getting food
any evening (day) in the k-th ranked restaurant is given by

S =1-A,(m=0). (7)

Fig. (2) shows the numerical estimates of fk. For &

= 0, the problem reduces to the random choice case (as

considerd in 2:2:1) and one gets fk =1 - ¢!, giving

f:ka/Nio.63. For & = 1, we get f, =1 — 2N,
giving f =X f, /[N=0.582

C. Strict Crowd-avoiding Case : We consider here
the case where each agent chooses on any evening (7)
randomly among the restaurants in which nobody had
visited in the last evening (¢ — 1). This is the case where &
=0and T — 0 in Eq. (1). Numerical simulation results
for the distribution D(f) of the fraction f of utilized
restaurants is Gaussian with a most probable value at

f=0.46. This can be explained in the following way: As
the fraction f of restaurants visited by the agents in the
last evening is completely avoided by the agents this
evening, so the number of available restaurants is N(1 —
f) for this evening and is chosen randomly by all the
agents. Hence, when fitted to Eq. (2) with A = 1/(1 — f).
Therefore, following Eq. (2), the equation for f can be

written as

a-7 {kexp[—ﬁﬂ# .
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By solving above equation, we get ]7:0,46. This
result is well fitted with the numerical results for this limit
(xi =0, T = 0)

D. Stochastic Crowd Avoiding Case : Let the
strategy be the following: if an agent goes to restaurant k&
in the earlier day (¢ — 1) then the agent will go to the
same restaurant in the next day with probability

1
P ()= (t—l) and to any other restaurant k'(# k) with
n (t—
k
N (e /10) . |
probability pk'(¢) = W . Numerical results for this

stochastic strategy show the average utilization fraction f°
to be around 0.80 and the distribution D(f) to be Gaussian
peaked around £ = 0.8 as shown in Fig. 1.3,

An approximate estimate of the average utilization
ratio f for this strategy in steady state may proceed as
follows: Let a(f) denote the fraction of restaurants having
exactly 7 agents (i = 0; ... ; N) visiting on any evening ()
and assume that a(#) = 0 for i 2 3 at any (large enough) ¢,
as the dynamics stabilizes in steady state. So,
ay(tyta,(t)ra,(t) = 1, a,()+2a,(t) = 1 for any (large enough)
t. Hence a(t) = ay(?). Now ay(?) fraction of agents will
make attempts to leave (each with probability 1/2) their
respective restaurants in the next evening (¢ + 1), while no
activity will occur on the restaurants where, only one came
(a,) in the previous evening (¢). These a,(¢) fraction of
agents will get equally divided (each in the remaining N —
1 restaurants). Of these a,(¢), the fraction going to the
vacant restaurants (a, in the earlier evening) is now
ay(t)a,(1). Hence the new fraction of vacant restaurants at
this stage of consideration will be () — a(¢)a,(?). In the
restaurants having exactly two agents (a, fraction in the
last evening), some vacancy will be created due to this
process in steady state, and this fraction will be equal to
a, (1) a, ()

4 4
. ) )
= a, for all i and 7, we get 4y —aya, +T_a272
Hence using a, = a, we get a, = a, = 0.2, giving a; = 0:6
and f = a; + a, = 0.8 in the steady state. The above
calculation is approximate as none of the restaurant is

—a, (1) . In the steady state, where a (¢ +1)=a (%)

Clo,

assumed to get more than two costumers on any day (q; =
0 for i = 3). The advantage in assuming only a, and a, to
be non-vanishing on any evening is that the activity of
redistribution on the next evening starts from a, fraction
of the restaurants only. This of course affects a, and a,
for the next day and for steady state these changes will
balance. Numerically we checked that ¢, < 0:03 for i >3

and hence the above approximation does not lead any

serious error-.
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FIG. 3: Plot shows the numerical simulation results for a typical
prospective customer distribution on any evening.

Phase Transition in KPR Problem

Here we will discuss the general problem with N
restaurants and g/ agents, where the fractional density g
is a fixed external parameter of the dynamics. Recasting
the problem in terms of zero-range interacting particles,
we observe a phase transition from a frozen phase with all
satisfied agents (and therefore not moving away from the
earlier choice of the respective restaurants) to an active
phase with unsatisfied ones at a critical density gc3.
Extensive numerical simulations as well as some analytical
calculations were performed to understand its features,
finding a good agreement with the exponents of stochastic
fixed-energy sandpiles. The behavior of the relaxation
properties of the frozen phase reveals an interesting faster-
is-slower effect. The study consists of the general
observation that a high level of coordination can arise
spontaneously from strategies which involve rather slower
dynamics, which however speed up the approach to overall
optimization or utilization and individual performance.

The Models : Inspired by the results for the problem
with N agents competing for N restaurants (each can serve
food to one person per day), we will discuss a more generic
and generalized stochastic occupation problem with
exclusion.

The rank ordering among the restaurants is
disregarded and we consider in general gN agents, where
the density g (the ratio between total number of agents
and total number of restaurants), can be taken as an external
parameter of the dynamics. For brevity, we refer to
individuals as particles and restaurants as the sites or nodes
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of an underlying network. In these terms the original
problem is defined on a fully connected graph.

A particle (or agent) moves from the site (restaurant)
i to a randomly chosen neighboring site (or restaurant) j
with a rate v(n,) that depends on the number (n,) of particles
that are present at it. This can be mapped to a zero range
process® which allows us to say that the stationary
probability distribution of the number of particles per site
can factorize in terms of single site functions. Given the
nature of the problem, we will discuss models having the
jumping rate v(1) = 0 for single occupancy, i.e., agents are
happy while alone, and v(n + 1) = v(n), i.e. the particles
repel each other (crowd avoiding). Given this definition
for the rates, at low densities (g < 1) there are sites filled
by single particles. But for high densities (g > 1) a finite
fraction of sites — so called ‘active’ sites — have multiple
occupancy. It has been shown® that there is a transition
between these two phases that appears at a certain density
g. < 1. Note that, in principle, this state is ergodic and
hence every configuration of it is accessible. Therefore,
for g < 1, the process sooner or later visit a state where 7,
< 1 for all sites and the dynamics stops (absorbing state).
When N is sufficiently large and g > g, most sites become
active (n > 1). The order parameter is defined as the steady
state density of active sites p, (density of sites having n >
1). Therefore the absorbing phase conforms to p, = 0,
whereas above some density g the steady state appears
with a non-zero value of the order parameter (p, > 0).

We will discuss in particular two models:
&) =1
(A) ,

B) vn) =1 - p)bn - 1.

We use the parallel dynamics having a simultaneous
update of the sites (or restaurants) at each time step, i.e.
agents’ actions are simultaneous akin to a repeated game

problem. Similarly for a sequential update, in which at each
time step, a randomly chosen particle jumps with some
probability.

The model A is implementation of the stochastic
crowd avoiding strategy of the original KPR problem. If
the site k has n, > 1 particles, each particle stay back with
probability 1/n, in the next time step, otherwise it jumps
to any of the neighboring sites randomly (see numerical
results shown in Figs. 111.4 & IIL.5).

In the model B an external parameter p is proposed
that represents the “patience” of costumers to overcrowded
conditions. The dynamic is following if the site & has n,
> 1 particles, each particle stays with probability p in the
next time step, otherwise it will jump to any of the
neighboring sites randomly.

The model B is similar to a kind of fixed energy
sandpile, but the study of its dynamics as a function of the
parameter p will acknowledge an interesting faster-is slower
effect related to the relaxation time of the frozen state.

Finally a waiting choice will be pointed out that can
be rational from the point of view of game theory: the
agents in overcrowded restaurants could wait simply
because they expect that others are leaving them alone.

Results from Numerical Simulations : The times
required to reach the steady state below and above g are
measured. The order parameter p, for below g reaches a
value p_ = 0 in the steady state. For g > g, order parameter
p, gets to a stationary state and fluctuates around a mean
value pg (> 0) . The system has persistent dynamics in this
case. The growth of the order parameter is exponential
away from g, and can be asserted as

pa0=pf [1-¢7"] ®)
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Fig. 4: Simulation results for model (4) in mean field case with estimated g. = 0.7502 £ 0:0002. (a) Variation of steady state density p, of active
sites versus g — g, fitting to B = 0.98 + 0.02. The inset shows the variation of p, with density g. (b) relaxation to absorbing state near critical point
for different system sizes, the inset showing the scaling collapse giving estimates of critical exponents oo = 1.00 + 0.01 and z" = 0.50 + 0.01. (¢)
Scaling collapse of o (#). The inset shows the variation of p,(#) versus time ¢ for different densities g. The estimated critical exponent is v, = 1:00
0:01. The system sizes N are mentioned. Taken from®. (Permission to use the figure from the paper is given by American Physical Society)
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Fig. 5: Simulation results for 2-d case in model (4) with estimated g, = 0.8827 + 0.0002. (a) Variation of steady state density p, of active sites
versus g — g, fitting to B = 0.68 + 0.01. The inset shows the variation of p, with density g. (b) relaxation to absorbing state near critical point for
different system sizes, the inset showing the scaling collapse giving estimates of critical exponents oo = 0.42 + 0.01 and z = 1.65 + 0.02. (¢) Scaling
collapse of p,(t). The inset shows the variation of p,(¢) versus time ¢ for different densities g. The estimated critical exponent is v = 1.24 + 0.01.
The simulations are done for square lattices of linear size L (N = L?). Taken from®. (Permission to use the figure from the paper is given by

American Physical Society)
for g > g, and

pyyce ©)

for g < g, where 7 is time scale of the relaxation. We are
going to denote the asymptotic value of the order parameter

(a) The 1-d model is following: The particles can hop
only to their nearest neighbor sites, and each
particle will choose either left or right neighbor
randomly. Here g, = 1 is found and hence the
phase transition is not interesting.

as p, hereafter. Close to the critical point (g — g, — 0.), (b) In the 2-d version of the model, a square lattices
find 2. ~ (g—g )ﬁ’ where f8 is the exponent of order is considered and the particles choose one of the

a ¢ P 4 nearest neighbors randomly. For N = 1000 x
parameter, and 7 ~ (g—gC )7‘/” . Typically p (t) obeys a 1000, g. = 0.88 £ 0.01, B=0.68 £ 0.01, z = 1.65
scaling form + 0.02, v = 1.24 £ 0.01 and o = 0.42 £+ 0.01

pa(t)~t_aF(£J;T~(g—gC)v~LZ’ (10)

where o and z are the dynamic exponents and L stands for
size of the system. Then we get f =V|@ by comparing
Eq. (8), Eq. (9) and Eq. (10) when #t is a constant for
t — oo . Numerically the time variation of p () is studied
and measure the exponents by fitting with above scaling
relation.

Model A : Mean Field case : For the mean field
case, a systems of N = 10° sites is considered, averaging
over 107 initial conditions. It is found g. = 0.7502 + 0002.
Using scaling fitting of p (#) for different g values (see
Fig. 4) give B = 0.98 + 0.02, z' = 0.50 + 0.01 (assuming
N = L* and using Eq. (10), a relation z = 4z" is got and
therefore z = 2.0 + 0.04), v, = 1.00 £ 0.01, oo = 1.00 +
0.01. And these independently estimated exponent values

satisfy the scaling relation 5 = V| well.

Lattice cases : The same dynamics in 1-d and 2-d
are studied. For a linear chain in 1-d, N = L = 10* is taken
and averaged over 10° initial conditions. For 2-d a square
lattice (N = L?) with L = 1000 is considered and averaging
over 10? initial conditions. Periodic boundary condition are
applied in both cases.

(Fig. I11.5). However these independently estimated
exponent values do not fit very well with the
scaling relation S =V|@ but this type of scaling
violation was also observed in many active-
absorbing transition cases.

Model B : Mean field case : For the mean field case,
N = 10° is taken, averaging over 103 initial condition.
Numerically the phase diagram is investigated and the
universality classes of the transition. In mean field case,
the phase boundary looks to be linear starting g. = 1/2 for
p = 0 and ending at g, = 1 for p = 1 (Fig. 6), obeying
g, = %(1 + p) . In this case, for p = 0, it is found the critical
point to be g, = 1/2, and this is similar to the fixed energy
sandpiles. Along the phase boundary, the critical exponents

are the same and they are matching with those of model
A.

Lattice cases : The same dynamics is studied in 1-d
and 2-d. For a linear chain in 1-d, here also N = L = 10*
is taken and average over 103 initial condition. For 2-d,
1000 x 1000 square lattice with L = 1000 is considered
and averaging over 10° different initial conditions.

(a) For 1-d, for the case p = 0, it is observed g, =
0.89 + 0.01, with B = 042 + 0.01, z = 1.55 +
0.02, v, = 1.90 £ 0.02 and & = 0.16 £ 0.01 (Fig.
7). The phase boundary in (g, p) is nonlinear

10
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Fig. 6: Phase diagram for the generalized model in the (g, p) plane,
showing the phase boundaries separating the active and absorbing phases
in 1-d, 2-d and mean field cases. The active phases are on the right of
the phase boundaries while the absorbing phases are on the left in the
respective cases. The system sizes are N = 10° for mean field, 1000 x
1000 for 2-d, and 10* for 1-d. Taken from®. (Permission to use the
figure from the paper is given by American Physical Society)

starting from g_ = 0.89 + 0.01 at p = 0 (Fig. 7) to
p =043 £0:03 at g = 1 (Fig. 6). Therefore, we
can independently define a model at unit density
(g = 1) and determine the critical probability p,
for which the system goes from an active to an
absorbing state.

(b) For 2-d, for the case p = 0, it is observed g. =
0.683 £ 0.002, with f = 0.67 £ 0.02, z = 1.55 +
0.02, v = 1.20 + 0.03 and o = 0.42 + 0.01. The
phase boundary looks nonlinear, from g, = 0.683
+ 0.002 for p = 0 (Fig. 6) extending to g, = 1 at
p=1
KPR Strategies on City Size Distribution
Modeling

The KPR problem can serve as a model for city
growth and organization, where the cities correspond to

restaurants and the city population to the customers, who
choose to stay or migrate according to the fitness of the
cities!>.

Model : In the usual KPR framework of N agents
and R restaurants, we take here in the following R = N for
the sake of simplicity. We assume that each restaurant i
has a characteristic fitness p, drawn from a distribution
I1(p). The entire dynamics of the agents is defined by p.
The concept of time is similar in the case of cities in the
sense that people make choices at a certain time scale.
Agents visiting a restaurant / on a particular evening t return
on the next evening ¢ +1 with probability p,, or otherwise
go to any other randomly chosen restaurant. We consider
the dynamics of the agents to be simultaneous.

In terms of cities, we can re-cast the model as follows:
every city has some fitness and initially people are
randomly distributed among the cities. At any point of time,
some people will be satisfied in a city and others will not
be satisfied by its services. According to our model, the
unsatisfied people will shift randomly to any other cities.
The same dynamics happens for other cities too. Therefore
at every time step (which can of the order of days or
months) cities may lose some people and may also gain
some people. We consider different types of fitness
distribution and observe the population distribution for the
cities.

The fitness parameter above is a proxy for a generic
city index, which can be any intrinsic property such as the
measure of wealth, economic power, competitiveness,
resources, infrastructure etc. or a combination of many of
these. It is important to note at this point that we are using
the restaurant model (KPR) paradigm to model the
distribution of sizes of urban agglomerations (cities), where
migration between cities is modeled by the movement of
agents across restaurants.
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Fig. 7: Simulation results for the case p = 0 in 1-d, g. = 0.892 £ 0.001. (a) Variation of steady state density p, of active sites versus g — g,, fitting
to #=0.42 £ 0.01. The inset shows the variation of p, with density g. (b) relaxation to absorbing state near critical point for different system sizes
L, the inset showing the scaling collapse giving estimates of critical exponents & = 0.15 + 0.01 and z = 1.40 + 0.02. (c) Scaling collapse of p (7).

The inset shows the variation of p,(¢) versus time ¢ for different densities g. The estimated critical exponent is v,

| = 1.90 + 0.02. The simulations are

done for linear chains of size L (= N). Taken from®. (Permission to use the figure from the paper is given by American Physical Society).
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Results : Distribution of sizes : Let us consider the
case when p; is uniformly distributed in [0, 1), i.e, I[1(p) =
1. In practice, we use a natural cutoff for p as 1 — 1/N.
The probability density of the number of agents s at a
particular restaurant P(s) has a broad distribution, and in
fact is a power law for most of its range, but has an
exponential cutoff:

P(s)~s"" exp(—s/S) (11)

where S is a constant which determines the scale of the
cutoff. The exponential cutoff is an artifact of the upper
cutoff in I'1(p). The power law exponent is v = 2.00(1) as
measured directly from the fit of the numerical simulation
data (Fig. IV 8).

100 —
=
102 ‘
10t
e 28
5 101 99
20
10°® |2
2is
10710 |12
b
10-12 2 \ \ L
10° 10" 102 10°

Fig. 8: The probability density P(s) for fraction of restaurants with s
agents. The data is shown for dierent system sizes N = 28; 29; 210; 211
212, 213; 214, 215 The power law exponent is compared with s—2. Taken
from>. (Permission to use the gure from the paper is given by American
Physical Society)

Let a(f) denote the number of customers on the
evening t in the restaurant i/ characterized by fitness D; in
the steady state. So, 2;a;(t)=N. Let n" denote the
average number of agents on any evening who are choosing
restaurants randomly. Then, for a restaurant i, a(f)p, agents
are returning to restaurant i on the next evening, and an
additional n'/N agents on the average additionally come to
that restaurant. This gives

a;(t+1)=a;(t)p, +n'/ N, (12)

where a_l. would now denote the average quantity. In the

steady state, we have a,(t+1) =a;(f) =a; and hence

’

— n

ai(l_pi)zﬁ (13)
giving

o

iTN 1-p, (14)

Fig. 9: The probability density P(s) for fraction of restaurants with s
agents, for different distributions IT(p) = (1 + 8)(1 — p)®, with 8 = - 0.5,
0, 1.0. The power law exponents agree with v = 2 + . The data are
shown for N = 23, Taken from!®. (Permission to use the figure from
the paper is given by American Physical Society)

These calculations hold for large p; (close to 1) which

give large values of g, close to a_l.. Thus, for all restaurants,

— n' 1

l—pl.

(15)

X
1 l_pl

Now, let us consider a case of Il(p) = 1, where p, =
1 —i/Nfori=1,2,..,N. Thus,

N N

T T (v (16)
for large N. One can numerically compute P(s) for this
particular case and the computed value of the cutoff in
P(s) which comes from the largest value of p, which is p,
=1 — 1/N, and it agrees nicely with the estimate, Eq. 16.

One can derive the form of the size distribution P(s)
easily. Since, R.H.S. of Eq. (13) is a constant (= C, say),
dp = da/a® = ds/s*, since a, being the number of agents in
restaurant i denotes nothing but the size s. An agent with a
particular fitness p ends up in a restaurant of characteristic
size s given by Eq. (13), so that one can relate I1(p)dp =
P(s)ds. Thus,

[(1-¢
nes) )

d
P(s) = H(p)d—’s’ -
S
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Thus, for an uniform distribution I(p) = 1, P(s) ~ s> for
large 5. It also follows that for I(p) = (1 + &) (1 — p)?,
one should get

P(s)~ s7(2+5), with —1<§<o0. (18)

Thus v does not depend on any feature of (p) except
on the nature of this function near p = 1, i.e., the value of
S, giving v = 2 + 4. Fig. 9 compares the numerical
simulation results for T1(p) = (1 + &) (1 — p)° and there is
indeed an agreement with v =2 + § (for more details'?).

KPR Strategies on Minority Game Problem

The minority game (MG) is a simple two choice game
played between N players, where the players are required
to make a choice between two options at each step. The
players ending up in the minority, i,e, choice with fewer
people, receive a fixed positive pay off. The number of
agents is an odd number, so that at all steps one group
belong to the minority. This is a variant of the El Farol
bar problem. Like the El Farol bar problem, the agents are
required to make independent and parallel decisions. The
pay-off in the MG received by the minority population,
does not depend on the number of people in the minority.
Hence a ‘socially effcient’ system is the one where the
populations are divided among the two choices almost
equally, i.e. sufficiently close to (NV — 1)/2. It is also
important, however, that such a division is reached in a
finite time (as opposed to, say, the 2N order scale, which
will sample eventually all configurations). A random choice
at each step will get rid of the convergence time problem,
which will be effectively 0, but the fluctuation in the
population in each choices will scale as V(N). This is a
highly ineffcient strategy in terms of resource utilization,
since a considerable number of agent could still be
accommodated in the minority. Several adaptive strategies
have been studied®’ in order to reduce this fluctuation and
to make the system more effcient. However, the most
complex strategies could not change the scaling of the
fluctuation, but could only reduce the pre-factor in the
scaling. Therefore, a significant resource misuse is likely
in these strategies.

In a similar way, stochastic strategies were also used
in the MG problem in’. Here the stochastic crowd avoiding
strategy of the KPR problem was used for the MG. The
fluctuation could be made arbitrarily small and this could
be achieved in log log N time. In terms of resource
utilization, this strategy performs best. However, there are
some significant differences with the classical MG problem

and this case. Particularly, in the classical MG the agents
know only if they were in the majority or minority at each
step. In this case, however, they are supplied with the
information regarding the difference of population among
the two choices as well.

In this section we will deal with question if this
additional information regarding the excess population in
the majority is indeed essential in reaching a low fluctuation
state in the MG problem within a small time?°. As a first
step, the excess crowd size is guessed by the individual
agents and are not supplied to them exactly. It can be
shown that as long as the guess value is not too far from
the actual value, the strategy still works. When the guess
values are different among individual agents and they also
vary in each time step, the minimum fluctuation is still
reached as long as the average value of the guess is not
far from the actual value. In fact, a continuous transition
can be seen in the resource utilization depending on the
accuracy of the guess of the crowd. In the end we will
also discuss the more realistic case of incorporating some
random traders as well.

Strategy of the Agents : In the case of the KPR
strategy being applied to the MG problem in’, the agents
in the majority shift with the probability

p, = A@)

T M+An L (19)

and the agents in the minority remain with their choice (p_
= 0). The total population (N = 2M + 1) is divided between
the two choices as M + A(f) + 1 and M — A(¢) with A(¢) =
(IN,(®) — Ng®| — 1)/2, where N, () and Ny(¢) are the
populations in the two choices at time ¢. Following this
strategy, the agents can reach the zero fluctuation limit in
log log N time’. Therefore, the resource utilization is
maximum in that case. However, its distribution is highly
asymmetric in the sense that after the dynamics stops in
the A(¥) = 0 limit, the agents in the minority (majority)
stay in their place for ever; hence, only one group always
benefits. Other than that, in this strategy the knowledge of
A(f) is made available to all the agents, which is not in
general the case for the classical version of the MG.

In the following discussions, we will go through
several variants of the above mentioned strategy. Primarily
we will discuss the possibilities to avoid the freezing of
the dynamics while keeping the fluctuation as low as
possible. We then discuss if it is possible to achieve the
small fluctuation states without knowing the magnitude of
A(?).
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Uniform Approximation in Guessing the Excess
Crowd : We consider the case where the agents know the
value of A(¥). Our intention here is to find a strategy where
the dynamics of the game does not stop and the fluctuation
can be made as small as required.

To do that consider the following strategy: The
shifting probability of the agents in majority is

A'(r)

PO N

(20)

[where A'(#)=GA(¢t) and G is a constant] and as before
the minority remains with their choice in the following step.
A steady state is reached in this model where the fluctuation
is arbitrarily small.

Steady-state behavior : To understand when such a
steady state value is possible, note that when the transfer
of the crowd from majority to minority is twice the
difference of the crowd, the minority then will become the
majority and will have the same amount of excess people
as before. Quantitatively, if the initial populations were M
+ A and M — A roughly, and if 2A people are shifted from
majority to minority, then the situation would continue to
repeat itself, as the transfer probability solely depends on
the excess crowd. Clearly, this is possible only when G >
1. Formally, if the steady-state value of A(?) is A, then the
steady state condition requires

GA
(M+A +1) ——=—=2A_. @1
§ M+GA +1 §
Simplifying this, one gets either A, = 0 or
G-2
A = T(M +1). (22)

For G <2(= G,), A, = 0 would be the valid solution,
since the above equation predicts a negative value for A,
which indicated no steady-state saturation. Therefore, there
is an active-absorbing type phase transition*® by tuning the
value of G. When 0 < G < 2, the system reaches the
minimum fluctuation state where A(7) = 0 and the dynamics
stops (the dynamics will differ qualitatively for G < 1 and
G > 1). For G > 2, however, a residual fluctuation remains
in the system, keeping it in the active state. This could be
interpreted as, until the guessed value of the crowd is not
too incorrect (twice as large), the agents can still find the
minimum fluctuation state. However, when the guess
becomes too far away from the actual value, a fluctuation
remains in the system.

For this phase transition, it is now possible to define
an order parameter for the problem as O(f) = A(f)/M and
its saturation values behaves as O, = 0 when G < 2 and
when M > 1, for G > 2, with O, = (G — G)/G giving the
order parameter exponent 3 = 1 for this continuous
transition. In Fig. V.10 the results of the numerical
simulation (M = 10°) as well as the analytical expression
for the order parameter are shown.

0.5 T T
10° :
04t Jo'F o]
O"’ T
ig* 4(6@@/ o — 1
5 | (x:1)
. 3 random o
@ 10 ;
(@) 10
0.2t XXe 1
0.1 pure case ©
(9-2)/g —
random ©
P R — 5 analytical, random case -
0.5 1 1.5 2 25 3 3.5 4

G, (1+x)

Fig. 10: Steady state values of the order parameter O are shown for
different values of G and x. The solid lines show the analytical results
for the pure and annealed disordered cases. Both match very well with
the simulation points. Inset shows the log-log plot near the critical point
for the disordered case, confirming § = 1:00 £ 0:01. All simulation data
are shown for M = 10°. Taken from®. (Permission to use the gure from
the paper is given by American Physical Society)

Dynamics of the system : When the excess crowd is
known to each agents, it is possible to calculate the time
dependent behavior of the order parameter both at and
above the critical point. Let at an instant ¢, the populations
in the two choices 4 and B are N ,(¢) and Ny(f) respectively
with N () > Ny(#). Therefore, by definition

N O=Ng(0)-1

A(t) 3

(23)

The amount of the population to be shifted from 4 to
B using this strategy would be

GA(t)

SO):A4+GAayH

(M +A@)+1) (23)

~ GA(1), (24)

when A(?) is small compared to M, i.e., when G is close to
G, or for large time if G < G,.

Clearly, N,(t + 1) = N,(©) — S(t) and Nyt + 1) =
Ny(t) + S(£), giving (where we assume population inversion)
Ng(+D)-N, (t+1)-1

2

A(t+1) =

14

SCIENCE AND CULTURE, JANUARY-FEBRUARY, 2018



~GA(t)-A@t)-1. (25)

Therefore, the time evolution of the order parameter
can be written as

do(t) 1
=—(2-G)0(t)——.
7 ( )O(1) v (26)
Neglecting the last term and integrating,
O(r) = O(0)exp [—(2 - G)t]. 27

The above equation signifies an exponential decay of
the order parameter for the subcritical region (1 < G < 2).
It also gives a time scale T ~ (G, — G) ! which diverges as
the critical point is approached. These are also confirmed
by the numerical simulations.

In Eq. (24), the leading order term was kept only. If,
however, the next term is kept, the expression becomes

1
(1) ~ GA(t) —ﬁ(GzAz(t) —GA? (z)) . (28)

The time evolution equation of the order parameter
then reads

dow) (G102 L
== 2-G)0()-G(G-1)0" (1) v @

Now, for the dynamics exactly at the critical point,
i.e.,, G = 2, the first term in the right-hand-side is zero.
The last term can be neglected, giving the order parameter
as

o) = 0O

T 2000 +1 (30)

In the long time limit O(¢) ~ ¢!, giving § = 1.

Therefore we see that under this approximation, the
usual mean field active-absorbing transition exponents are
derived. These exponents are also obtained using the
numerical simulations.

Effect of Random Traders : According to the
strategies mentioned above, if the excess population is
known to the agents (which in this case is in fact a measure
of the stock’s price) the fluctuations can have arbitrarily
small value. However, in real markets, there are agents who
follow certain strategies depending on the market signal
(chartists) and also some agents who decide completely
randomly (random traders). Here we discuss the effect of
having random traders in the market, while the rest of the
populations follow the strategies mentioned above.

Single Random Trader : When a single random trader
is present, even when A(f) = 0, that trader would choose
randomly between the two choices for the following steps
irrespective of whether he or she is in the minority or
majority. This will create a changeover between majority
and minority with an average time of two time steps. In
this way, the asymmetry in the resource distribution can
be avoided completely. However, that single agent will
always be in the majority.

More than One Random Traders : As is discussed
before, when all agents follow the strategy described by
Eq. (19), after some initial dynamics, A(¥) = 0 implying
that they do not change side at all. However, with a single
random trader, in an average time period 2, as he or she
selects alternatively between the two choices, the rest of
the population is divided equally between the two choices
and it is the random trader who creates the majority.
However that trader is always a loser. This situation can
be avoided when there is more than one random trader. In
that case, it is not possible always to have all of them in
the majority. There will be some configurations where some
of the random traders are in the minority, making their
time period of wining to be 2 (due to the symmetry of the
two choices). The absorbing state (for G < G ), therefore,
never appears with random traders, though the fluctuation
becomes non-zero for more than one random traders.
However, if the number of random traders (= pN, where p
is the fraction of random traders) is increased, the
fluctuation in the excess population will also grow
eventually to N'"*(see Fig. V 11). Therefore, the most
effective strategy could be the one in which (i) the
fluctuation is minimum and (ii) the average time period of
gain will be 2 for all the agents, irrespective of the fact
whether they are random traders or chartists. These two
are satisfied when the number of random traders is 2.
Furthermore, if one incorporates the random traders in the
strategy with partial knowledge of the excess crowd, a state
of very small fluctuations can still be reached.

Conclusion and Discussion

In KPR problem each agent makes decision in each
day ¢ independently and is based on the information about
the rank & of the restaurants and their previous day
prospective customer crowd size given by the numbers 7,(t
— 1) ... ny(0). Here we discussed the several stochastic
strategies where each agent chooses the k-th ranked
restaurant with probability p,(¢) described by Eq. (1). The
utilization fraction f, of the k-th ranked restaurants on every
evening is found and their average (over k) distributions
D(f) are shown in Fig. 1.2 for some special cases.
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Fig. 11: The saturation values of O, are plotted against G for different
fractions p of the random traders. M = 10° for the simulations. Taken
from®. (Permission to use the figure from the paper is given by American
Physical Society)

Numerically we find their distributions to be Gaussian with
the most probable utilization fraction f =0.63, 0.58 and
0.46 for the cases with a =0, T — ©o; a=1,T > «;
and o =0, T — 0 respectively. For the stochastic crowd-

avoiding strategy, we get the best utilization fraction ]_”:

0.8. The analytical estimates for f for the stochastic
crowd-avoiding strategy agree very well with the numerical
observations. In all these cases, we assume N = N, that is
the number of choices for each of the N agents is the same
as the number of agents or players. All the stochastic
strategies, being parallel in computational mode, converge
to solution at smaller time steps (~ VN or weakly dependent
on N) while for deterministic strategies the convergence
time is typically of order of N, which is useless in the
truly macroscopic (N — oo) limits. However, deterministic
strategies are useful for small N and rational agents can
design appropriate punishment schemes for the deviators.

The KPR problem has a dictated solution that leads
to one of the best possible solution to the problem, with
each agent getting his dinner at the best ranked restaurant
with a period of N days, and with best possible value of
]_” (= 1) starting from the first evening itself. However the
parallel decision strategies (employing evolving algorithms
by the agents, and past informations, e.g., of n(t)), which
are necessarily parallel among the agents and stochastic
(as in democracy), are less efficient ( f < 1; the best one
the stochastic crowd-avoiding strategy, giving ]_": 0.8
only). We note that most of the “smarter” strategies lead
to much lower efficiency or less utilization. Next we have
discussed how a KPR strategy gives rise to a phase
transition from an active to a frozen phase, as the density
varies. We have considered that g, agents are competing
among themselves to get the best service from N equally

ranked restaurants. In the original KPR problem, where
density g = 1 is far from its critical value g, the relaxation
time T, given by Eq. (10), never showed any system size L
= N4 dependence. These models are recast in terms of
zero-range interacting particles in order to have analytical
insights on the systems’ behavior. For g < 1, absorbing
configurations are present, and that can be reachable or
not, depends on the basic dynamics. The existence of a
critical point g is found above which the system is unable
to reach frozen configurations. When the agents are moving
if and only if they are competing with other agents (model
B) with p = 0, they could not reach satisfactory
configurations if the density is above g. = 1/2. When the
agents wait longer (higher p) speed up the convergence,
increasing g, and decreasing the time to reach steady
configurations (faster-is-slower effect). The phase transition
is numerically investigated in finite dimensions finding a
good agreement with the exponents of stochastic fixed-
energy sandpile.

We model city growth as a Kolkata Paise Restaurant
Problem problem, specifically in the context of city size
distributions. Zipf law for city size distribution can be
thought to be a consequence of the variation in the quality
of available services, which can be measured in terms of
various amenities. We argue that this measure can be
characterized by an intrinsic fitness. We make a
correspondence from the population in cities to the number
of customers in restaurants in the framework of the Kolkata
Paise Restaurant problem, where each restaurant is
characterized by an intrinsic fitness p similar to the
difference in the quality of services in different cities. We
showed the size distributions, and the exact value of the
utilization fraction for the case when choices are made
independent of fitness. Results for the case with uniform
fitness are also reported. When fitness is uniformly
distributed, it can give rise to a power (Zipf) law for the
number of customers in each restaurant.

In the stochastic strategy minority game, a very
efficient strategy is the one described by Eq. (19), where
the agents very quickly (in log log N time) get divided
almost equally (M and M + 1) between the two choices.
This strategy guarantees that a single cheater, who does
not follow this strategy, will always be a loser’. However,
the dynamics in the system stops very quickly, making the
resource distribution highly asymmetric (people in the
majority stays there for all subsequent choices) thereby
making this strategy socially unacceptable. We then
discussed several modications in the above mentioned
strategy to avoid this absorbing state. The presence of a
single random trader (who picks between the two choices
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completely randomly) will avoid this absorbing state and
the asymmetric distribution will also vanish. However, this
will always make that particular trader a loser. But the
presence of more than one random trader will avoid such
a situation too, making the average time period of switching
between majority and minority for all the traders
(irrespective of whether they are chartists or random
traders) to be 2. We also show that by varying a parameter,
the agents can achieve any value of the fluctuation. This is
an active-absorbing type phase transition for which the
critical exponents can also be found analytically, which are
well supported by numerical simulations.
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FIG. A.1: The entry on Kolkata Paise Restaurant (KPR) Problem in Wolfram Demonstrations Project (website: http://demonstrations.wolfram.com/
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In this appendix, [A.1-A.14] present the excerpts from

Wolfram Demonstrations, Wikipedia, articles and books,
where Kolkata Paise Restaurant Problem has been discussed
and developed by researches from different international
institutions in social and natural sciences.

# Wolfram

Demonstrations Project

The KPR problem is a repeated game, played between a large number of agents having no interaction among themselves. In KPR, N prospective customers (the agents)
choose from N restaurants each evening (time t ) in parallel decision mode. Each restaurant has the same price for a meal but a different rank k (agreed upon by all the
customers) and can serve only one customer. If more than one customer arrives at any restaurant on any evening, one of them is randomly chosen and is served and the rest
do not get dinner that evening. Information regarding the customer distributions for earlier evenings is available to everyone. Each evening, each customer chooses a
restaurant independent of the others. Each customer wants to go to the restaurant with the highest possible rank while avoiding a crowd so as to be able to get dinner there.

In Kolkata, there were very cheap and fixed rate "Paise Restaurants” (also called "Paise Hotels") that were popular among the daily laborers in the city. During lunch hours,
the laborers used to walk (to save the transport costs) to one of these restaurants and would miss lunch if they got to a restaurant where there were too many customers.
Walking down to the next restaurant would mean failing to report back to work on time! Paise is the smallest Indian coin and there were indeed some well-known rankings of
these restaurants, as some of them would offer tastier items compared to the others.

The KPR problem seems to have a trivial solution: suppose that somebody assigns a restaurant to each person and rotates them on successive evenings—the fairest way; call
that the dictated solution. This, however, is NOT a true solution of the KPR problem, where each agent decides on his own every evening, based on complete information about
past events. In KPR, the customers try to evolve a learning strategy to eventually get to something like the dictated solution.

Let the strategy chosen by each customer in the KPR game be such that, at any time t, the probability p,(t) of arriving at the k™ ranked restaurant is given
! Ze-1) =3¥ Zife-1)
pe(t) = 1[ic% exp(-ER)] 2= 7 [k enp =

where n,(t) denotes the number of customers arriving at the k™ ranked restaurant on the t" evening and , o,T denote two parameters.

Let f be the utilization fraction, which is the percentage of people getting food on any evening. In this Demonstration, the histogram gives the distribution f of against the
fraction itself for different values of the parameters a and t in the expression for p,(t) for N=50, the number of agents and of restaurants, when the data is averaged over

2000 time steps or evenings. You can change the strategy for probabilistic choices of differently ranked restaurants by changing the values of the parameters a and T. For
example, the random choice of restaurants by the customers (independent of rank) corresponds to a=0 and T-->infinity.

On a collective level, we look for the fraction f of customers getting dinner in any evening and also its distribution for various strategies of the game. The distribution f will be
Gaussian with most probable utility fraction f=f,. We get f--->0.63 for 0=0, T--->infinity (pure random choice);f --->0.57 for a=1, T---->infinity (strict rank-dependent choice);

f,=0.46 and =0 for T--->0, (avoiding-past-crowd choice).

Kolkata Paise Restaurant KPR Problem)
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Kolkata Paise Restaurant Problem

Taken from WIKIPEDIA

WIKIPEDIA

‘The Free Encyclopedia

Another variant of the El Farol Bar problem is the Kolkata Paise Restaurant Problem [5][6] [7] [8] [9] [10] [11] where the number of choices (n) as well as the number of
players (N) are (macroscopically) large; typically n = N (while in the El Farol Bar Problem n = 2, N is macroscopically large). Both are repetitive and information regarding
the history of choices made by different players for different restaurants are available to every one. For the choices for a single restaurant on any evening by more than one
player, one is randomly selected from them and served food (payoff = 1) while others lose (payoff = 0). Hence, while each player gains a point (payoff) if her choice of the
restaurant any evening is unique (not made by other players on the same evening), the resource utilization is maximised when each restaurant is chosen by at least one
player.

In Kolkata there were very cheap and fixed rate “Paise Restaurants” that were popular among the daily labourers in the city. During lunch hours, the labourers used to walk
(to save the transport costs) to one of these restaurants and would miss lunch if they got to a restaurant where there were too many customers. Walking down to the next
restaurant would mean failing to report back to work on time! Paise is the smallest Indian coin and there were indeed some well-known rankings of these restaurants, as
some of them would offer tastier items compared to the others. A more general example of such a problem would be when the society provides hospitals (and beds) in
every locality but the local patients go to hospitals of better rank (commonly perceived) elsewhere, thereby competing with the local patients of those hospitals.
Unavailability of treatment in time may be considered as lack of the service for those people and consequently as (social) wastage of service by those unattended hospitals.

The statistics of individual pay-offs for the adopted strategies and the statistics for the social utilization (ratio of the attended restaurants on any evening and N) of course
depends on n/N and has an average value dependent of the strategies adopted by the players. It is seen that a stochastic strategy with probability of choosing the same
restaurant(as the one chosen last evening) going inversely with the number of players who made the same choice last evening, and choosing others with equal probability,
gives better result (giving utilization fraction about 0.79) than deterministic or simple random choice (noise trader) (with utilization fraction = 1 - exp[-1] ~ 0.63) strategies.
References (partial):

5.A. S. Chakrabarti, B. K. Chakrabarti, A. Chatterjee, M. Mitra, (2009). "The Kolkata Paise Restaurant problem and resource utilization". Physica A. 388: 2420-2426.

6. Asim Ghosh, Bikas K. Chakrabarti. "Kolkata Paise Restaurant (KPR) Problem". Wolfram Alpha.

7.A. Ghosh, A. Chatterjee, M. Mitra, B. K. Chakrabarti (2010). "Statistics of the Kolkata Paise Restaurant Problem”. New Journal of Physics. 12: 075033. doi:
10.1088/1367-2630/12/7/075033.

8.A. Ghosh, D. D. Martino, A. Chatterjee, M. Marsili, B. K. Chakrabarti (2012). "Phase transition in crowd dynamics of resource allocation”. Physical Review E. 85:
021116. doi:10.1103/physreve.85.021116.

9. Frédéric Abergel, Bikas K. Chakrabarti, Anirban Chakraborti, Asim Ghosh (2013). "Econophysics of Systemic Risk and Network Dynamics" (PDF).
doi:10.1007/978-88-470-2553-0. ISBN 978-88-470-2552-3.

10. A. Chakraborti, D. Challet, A. Chatterjee, M. Marsili, Y.-C. Zhang, B. K. Chakrabarti (2015). “Statistical Mechanics of Competitive Resource Allocation using
Agent-Based Models". Physics Reports. 552: 1-25. doi:10.1016/j.physrep.2014.09.006.

11. Bikas K Chakrabarti, Arnab Chatterjee, Asim Ghosh, Sudip Mukherjee, Boaz Tamir (2017). "Econophysics of the Kolkata Restaurant Problem and Related
Games: Classical and Quantum Strategies for Multi-agent, Multi-choice Repetitive Games". ISBN 978-3-319-61351-2.

FIG. A.2: Part of the entry on Kolkata Paise Restaurant (KPR) Problem in Wikipedia (as in December 2017; website: https://en.wikipedia.org/wiki/
El Farol Bar problem#Kolkata Paise Restaurant Problem

Physica A 490 (2018) 745-753

Econophysics of a ranked demand and supply resource allocation problem

Avner Priel >, Boaz Tamir¢,
2Department of Physics, University of Alberta, Canada
*The Mina and Everard Goodman Faculty of Life-Sciences, Bar Illan University, Israel
°Faculty of interdisciplinary studies, Bar llan University, Israel

Abstract: We present a two sided resource allocation problem, between demands and supplies, where both parties are ranked. For example, in
Big Data problems where a set of different computational tasks is divided between a set of computers each with its own resources, or between
employees and employers where both parties are ranked, the employees by their fithess and the employers by their package benefits. The
allocation process can be viewed as a repeated game where in each iteration the strategy is decided by a meta-rule, based on the ranks of both
parties and the results of the previous games. We show the existence of a phase transition between an absorbing state, where all demands are
satisfied, and an active one where part of the demands are always left unsatisfied. The phase transition is governed by the ratio between
supplies and demand. In a job allocation problem we find positive correlation between the rank of the workers and the rank of the factories;
higher rank workers are usually allocated to higher ranked factories. These all suggest global emergent properties stemming from local
variables. To demonstrate the global versus local relations, we introduce a local inertial force that increases the rank of employees in proportion
to their persistence time in the same factory. We show that such a local force induces non trivial global effects, mostly to benefit the lower
ranked employees.

Indeed, terms like non-equilibrium phase transition could be applied to social phenomena and are used in computational sociology [3,4].
Some generative examples are El Farole Bar problem, the Kolkata Paise Restaurant problem (KPR), and Minority Games [5-11]. The KPR
problem is a resource allocation problem defined as follows: each day, a set of agents are looking for restaurants for their lunch...

The KPR problem is a repeated game in the language of game theory, having many versions. In one version, the restaurants are ranked [6],
and the agents pick the restaurants according to their rank. Other versions suggest different meta-rules, for example a fixed probability to
avoid a restaurant which was over crowded....

we study the properties of the convergence to a steady-state, as well as the phase transition observed w.r.t. the parameter g, the density of
employees. For the general theory of phase transition see [13], and for some examples of phase transition in resource allocation problems
see [14].

References(partial):

[6] A. Ghosh, A.S. Chakrabarti, B.K. Chakrabarti, Kolkata paise restaurant problem in some uniform learning strategy limits, in: B. Basu, B.K. Chakrabarti, S.R. Chakravarty, K
Gangopadhyay (Eds.), Econophysics and Economics of Games, Social Choices and Quantitative Techniques, New Economic Windows, Springer, Milan, 2009.

[7]A.S. Chakrabarti, B.K. Chakrabarti, A. Chatterjee, M. Mitra, The Kolkata Paise Restaurant problem and resource utilization, Physica A 388 (2009) 2420-2426.

[8] A. Ghosh, A. Chatterjee, M. Mitra, B.K. Chakrabarti, Statistics of the Kolkata palse restaurant prohlem New. J. Phys. 12 (2010) 075033.

[9] A. Chakraborti, D. Challet, A. Chatterjee, M. Marsili, Y.-C. Zhang, B.K. Cl i, of ive resource allocation using agent-based models, Phys. Rep.
552 (2015) 1-25.

ﬁA] A. Ghosh, D. De-Martino, A. Chatterjee, M. Marsili, B.K. Chakrabarti, Phase transition in crowd dynamics of resource allocation, Phys. Rev. E 85 (2012) 021116.
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AIP Conf. Proc. 1508, 492-496 (2012)

Strategies in a Symmetric Quantum Kolkata Restaurant Problem

Puya Sharif and Hoshang Heydari
Physics Department, Stockholm University 10691 Stockholm, Sweden
E-mail:ps@puyasharif.net

Abstract: The Quantum Kolkata restaurant problem is a multiple-choice version of the quantum minority game, where a set of n non-
communicating players have to chose between one of m choices. A payoff is granted to the players that make a unique choice. It has
previously been shown that shared entanglement and quantum operations can aid the players to coordinate their actions and acquire
higher payoffs than is possible with classical randomization. In this paper the initial quantum state is expanded to a family of GHZ-type
states and strategies are discussed in terms of possible final outcomes. It is shown that the players individually seek outcomes that
maximize the collective good.

QUANTUM KOLKATA RESTAURANT PROBLEM:-

This is a general form of a minority game [5, 6, 7], where n non-communicating agents (players), have to choose between m choices. A
payoff of $ = 1 is payed out to the players that make unique choices. Players making the same choice receive $ = 0. The challenge is to
come up with a strategy profile that maximizes the expected payoffs E i ($) of all players i, and has the property of being a Nash
equilibrium. In the absence of communication, in a classical framework, there is nothing else to do, but to randomize.

References (partial):

5. A. S. Chakrabarti, B. K. Chakrabarti, A. Chatterjee, M. Mitra, "The Kolkata Paise Restaurant problem and resource utilization", Physica
A 388,(2009) 2420-2426.

6. S. C. Benjamin, P.M. Hayden, Phys. Rev. Lett 87, 069801 (2001).

7. Q. Chen, Y. Wang, N-player quantum minority game, Physics Letters A, A 327, 98,102, (2004).
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A Holistic Approach to Crowd Congestion Management in Singapore’s Mass Rapid Transit System
Mithila Harish
Student Category
NUS Graduate School for Integrative Sciences and Engineering (NGS), NUS
Contact number: 90178530, Email address: mithila.harish@u.nus.edu
Published and used with permission by Temasek Defence Systems Institute and
Department of Industrial and Systems Engineering, Faculty of Engineering, NUS

Abstract: As the population in Singapore continues to increase, it is extremely important that an increased focus is given to crowd
control and management. In this regard, this paper gives an overview of traditional crowd modelling strategies and proposes
some new techniques to potentially improve upon existing models, as well as examining the ease with which they can be
implemented. It is hoped that these models will provide a better realization of crowd behavior and how these systems can help in
building a smart city. The algorithm suggested is targeted at the Mass Rapid Transit System but it is hoped that it can be applied
to crowded environments in general, with suitable modifications.

6.1 Sandpile model in General

An interesting paper by Ghosh et al [23] describes an experiment modelled on the Kolkata Paise Restaurant Problem [KPR] [24]
- which is in turn similar to the El Farol Bar Problem proposed by Arthur [25] to analyze whether the system moves to an
absorbing from an active state, i.e. from multiple to single occupancy which illustrates Self Organized Criticality. The KPR
Problem analyzes the case when gN agents wish to go to N restaurants wish the assumption that agents will not prefer to go to
crowded restaurants. The result of this analysis is to observe how efficiently resources are

utilized, given such constraints.

References (partial)
[23] Ghosh, A., De Martino, D., Chatterjee, A., Marsili, M., & Chakrabarti, B. K. (2012). Phase transitions in crowd dynamics of

resource allocation. Physical Review E, 85(2), 021116

[24] Chakrabarti, B. K. (2007). Kolkata restaurant problem as a generalised El Farol Bar problem. In Econophysics of Markets and
Business Networks (pp. 239-246). Springer Milan

[25] Brian Arthur,W., 1994, Inductive Reasoning and Bounded Rationality: El Farol Problem, American Economics Association

Papers & Proceedings 84, 406
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Late-Breaking Developments in the Field of Artificial Intelligence
Papers Presented at the Twenty-Seventh AAAI Conference on Artificial Intelligence

The Value of Ignorance about the Number of Players

Noga Alon, Reshef Meir and Moshe Tennenholtz
Microsoft Research
nogaa@tau.ac.il, reshef. meir@mail.huji.ac.il, moshet@microsoft.com

Minority games applied the El Farol Bar as a metaphor for various economic situations (Challet, Marsili, and
Zhang 2001). Our variant above and the Kolkata Paise Restaurant problem (Chakrabarti 2007), where players
choose from multiple restaurants, are useful analogies to real problems like congestion of roads and of service
providers—typically modeled as congestion games (Rosenthal 1973).

Referece (partial):
Chakrabarti, B. K. 2007. Kolkata restaurant problem as a generalised el farol bar problem. In Econophysics of
Markets and Business Networks. Springer. 239-246.
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A Theatre Attendance Model

Michele Bisceglia, University of Bergamo, Bergamo, Italy

Abstract: In this manuscript, the author proposes a model that constitutes a generalization of the El Farol Bar problem. In this model, in each
period, each one of the n agents decides the arrival time at a theatre with free entry in which there are k (k<n) seats. Each individual wants to
minimize the waiting time (before the beginning of the show) but prefers to assist to the show comfortably seated. The author introduces a
utility function that takes into account these aspects, in which also agents’ heterogeneity, in terms of different patience or comfort
preferences, is considered. The author examines some possible approaches to this problem, and provides a new inductive reasoning
modeling for a simplified version of this Theatre Attendance model, according to which each agent decides the arrival time at the theatre in a
certain period by looking at the outcome of the previous round.

Lastly, an interesting generalization of the Bar Attendance model is the Kolkata Paise Restaurant problem. In this model, in each period, N
people has to choose between n restaurants. This model has been proposed by Chakrabarti (2007) and deeply investigated (in the case n
=N ) firstly by Chakrabarti et al. (2009).

References (partial):

Chakrabarti, B. K. (2007). Kolkata Restaurant problem as a generalised El Farol Bar problem. In B. K. Chakrabarti & A. Chatterjee (Eds.),
Econophysics of Markets and Business Networks (pp. 239-246), Springer.

Chakrabarti, A., Chakrabarti, B. K., Chatterjee, A., & Mitral, M. (2009). The Kolkata Paise Restaurant problem and resource utilization.
Physica A: Statistical Mechanics and its Applications, 388(12), 2420-2426.
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An adaptive agent-based system for deregulated smart grids
Nicola Capodieci' - Giuliano Andrea Pagani 2 - Giacomo Cabri * - Marco Aiello 2

1Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Universita di Modena e Reggio Emilia, Modena, Italy
2 Johann Bernoulli Institute, University of Groningen, Groningen, The Netherlands

Abstract: The power grid is undergoing a major change due mainly to the increased penetration of renewables and novel digital
instruments in the hands of the end users that help to monitor and shift their loads. Such transformation is only possible with the
coupling of an information and communication technology infrastructure to the existing power distribution grid. Given the scale and the
interoperability requirements of such future system, service-oriented architectures (SOAs) are seen as one of the reference models and
are considered already in many of the proposed standards for the smart grid (e.g., IEC-62325 and OASIS eMIX). Beyond the technical
issues of what the service-oriented architectures of the smart grid will look like, there is a pressing question about what the added value
for the end user could be. Clearly, the operators need to guarantee availability and security of supply, but why should the end users
care? In this paper, we explore a scenario in which the end users can both consume and produce small quantities of energy and can
trade these quantities in an open and deregulated market. For the trading, they delegate software agents that can fully interoperate and
interact with one another thus taking advantage of the SOA. In particular, the agents have strategies, inspired from game theory, to take
advantage of a service-oriented smart grid market and give profit to their delegators, while implicitly helping balancing the power grid.
The proposal is implemented with simulated agents and interaction with existing Web services. To show the advantage of the agent
with strategies, we compare our approach with the “base” agent one by means of simulations,

highlighting the advantages of the proposal.

The minority game which best fits the smart grid agent negotiation process is the El Farol Bar game. A recent variation of the El Farol
Bar problem, called the Kolkata Paise restaurant problem [12], was proposed in order to study minority games characterized by a
macroscopically large number of possible strategies for the participating agents: In our case, a future smart grid will have a large
number of agents involved, but each agent will have a restricted amount of choices that are related to either trying to stipulate a
contract with a prosumer or a Genco. Therefore, the traditional version of the El Farol Bar game better suits our reference model.

Referencs (Partial):
12. Chakrabarti AS, Chakrabarti BK, Chatterjee A, Mitra M (2009) The Kolkata Paise Restaurant problem and resource utilization.
Phys A Stat Mech Appl 388(12):2420-2426
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Three-player quantum Kolkata restaurant problem under decoherence

M. Ramzan

Department of Physics, Quaid-i-Azam University,
Islamabad 45320, Pakistan

Abstract: Effect of quantum decoherence in a three-player quantum Kolkata restaurant problem is investigated using tripartite
entangled qutrit states. Different qutrit channels such as, amplitude damping, depolarizing, phase damping, trit-phase flip and
phase flip channels are considered to analyze the behaviour of players payoffs. It is seen that Alice’s payoff is heavily influenced
by the amplitude damping channel as compared to the depolarizing and flipping channels. However, for higher level of
decoherence, Alice’s payoff is strongly affected by depolarizing noise. Whereas the behaviour of phase damping channel is
symmetrical around 50 % decoherence. It is also seen that for maximum decoherence ( p = 1), the influence of amplitude
damping channel dominates over depolarizing and flipping channels. Whereas, phase damping channel has no effect on the
Alice’s payoff. Therefore, the problem becomes noiseless at maximum decoherence in case of phase damping channel.
Furthermore, the Nash equilibrium of the problem does not change under decoherence.

More recently, Sharif et al. [12] has proposed the quantum solution to a three-player Kolkata restaurant problem. The Kolkata
Paise Restaurant (KPR) [13] is a repeated game similar to the Minority games, played between a large number of agents having
no interaction among themselves.

References (partial):

12. Puya, S., Hoshang, H.: Quantum solution to a three player Kolkata restaurant problem using entangled quitrits.
arXiv:quantph/1111.1962 (2011)

13. Chakrabarti, A.S., Chakrabarti, B.K., Chatterjee, A., Mitra, M.: The Kolkata paise restaurant problem and resource utilization. Physica
A 388, 2420 (2009)
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Improving the payoffs of cooperators in three-player cooperative game using weak measurements
Xiang-Ping Liao* - Xiang-Zhuo Ding? -Mao-Fa Fang?

*College of Science, Hunan University of Technology, Zhuzhou 412008, Hunan, China
2 College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410081, Hunan, China
2 College of Physics and Information Science, Hunan Normal University, Changsha 410081, Hunan, China

Abstract: In this paper, an efficient method is proposed to improve the payoffs of cooperators in cooperative three-player quantum
game under the action of amplitude damping, bit flip and depolarizing channels using weak measurements. It is shown that the
payoffs of cooperators can be enhanced to a great extent in the case of amplitude damping channel, and the payoff sudden death
can be avoided in the case of bit flip and depolarizing channels. Moreover, the payoffs of cooperators tend to a constant by changing
weak measurement strength in spite of sufficiently strong decoherence.

It has been shown that being well aware of the dimensionality of the system, a player can achieve a mean payoff equal to almost 1.
Sharif et al. [20] proposed the quantum solution to a three-player Kolkata restaurant problem. The Kolkata paise restaurant (KPR)

[21] is a repeated game similar to the minority games, played between a large number of agents among whom there are no
interactions.

References (partial):

20. Puya, S., Hoshang, H.: Quantum solution to a three player Kolkata restaurant problem using entangled qutrits. arXiv:1111.1962
[quant-ph], (2011)

21. Chakrabarti, A.S., Chakrabarti, B.K., Chatterjee, A., Mitra, M.: The Kolkata paise restaurant problem and resource utilization.
Phys. A 388, 2420-2426 (2009)
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Law of corresponding states for open collaborations

Marco Gherardi, 23" Federico Bassetti,  and Marco Cosentino Lagomarsino *

Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, 15 rue de I'Ecole de Médecine Paris, France
2Dipartimento di Fisica, Universita degli Studi di Milano, via Celoria 16, 20133 Milano, Italy
3I.N.F.N. Milano
“Dipartimento di Matematica, Universita di Pavia, Pavia, Italy
SCNRS, UMR 7238, Paris, France

Abstract: We study the relation between number of contributors and product size in Wikipedia and GitHub. In contrast to
traditional production, this is strongly probabilistic, but is characterized by two quantitative nonlinear laws: a power-law bound
to product size for increasing number of contributors, and the universal collapse of rescaled distributions. A variant of the
random-energy model shows that both laws are due to the heterogeneity of contributors, and displays an intriguing finite-size
scaling property with no equivalent in standard systems. The analysis uncovers the right intensive densities, enabling the
comparison of projects with different numbers of contributors on equal grounds. We use this property to expose the detrimental
effects of conflicting interactions in Wikipedia.

The marginal distribution of the number of contributors, i.e., the number N(n) of projects with a given number n of contributors,
is well described by a power law, N(n) = N,n *, for both Wikipedia and GitHub (Fig. 2), where N , is the number of one-man

projects. Such a wide distribution has been already noted, and may reflect preferential-attachment dynamics [34], or the
variable intrinsic appeal of projects [35].

References (partial):
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Mean Field Equilibria for Competitive Exploration in Resource Sharing Settings

Pu Yang, Krishnamurthy lyer, Peter I. Frazier

School of Operations Research and Information Engineering, Cornell University Ithaca, NY, 14850

Abstract: We consider a model of nomadic agents exploring and competing for time-varying location-specific resources, arising in
crowdsourced transportation services, online communities, and in traditional location-based economic activity. This model comprises a
group of agents, and a set of locations each endowed with a dynamic stochastic resource process. Each agent derives a periodic
reward determined by the overall resource level at her location, and the number of other agents there. Each agent is strategic and free
to move between locations, and at each time decides whether to stay at the same node or switch to another one. We study the
equilibrium behavior of the agents as a function of dynamics of the stochastic resource process and the nature of the externality each
agent imposes on others at the same location. In the asymptotic limit with the number of agents and locations increasing
proportionally, we show that an equilibrium exists and has a threshold structure, where each agent decides to switch to a different
location based only on their current location’s resource level and the number of other agents at that location. This result provides
insight into how system structure affects the agents’ collective ability to explore their domain to find and effectively utilize resource-rich
areas. It also allows assessing the impact of changing the reward structure through penalties or subsidies.

Our model can be seen as an extension of the Kolkata Paise Restaurant Problem [7]. In this game, each agent chooses
(simultaneously) a restaurant to visit, and earns a reward that depends both on the restaurant’s rank, which is common across
agents, and the number of other agents at that restaurant. This reward is inversely proportional to the number of agents visiting the
restaurant.

The Kolkata Paise Restaurant Problem is itself a generalization of the El Farol bar problem [3, 8]. The Kolkata Paise Restaurant
Problem is studied both in the one-shot and repeated settings, with results on the limiting behavior of myopic [7] and other strategies
[12], although we are not aware of existing results on mean-field equilibria in this model. Our model is both more general, in that we
allow general reward functions and allow location’s resource to vary stochastically, and more specific, in that our locations are
homogeneous. Our model also differs in that our agents’ decisions are made asynchronously.

References (partial):
[7]A. S. Chakrabarti, B. K. Chakrabarti, A. Chatterjee, and M. Mitra. The kolkata paise restaurant problem and resource utilization.

Physica A: Statistical Mechanics and its Applications, 388(12):2420-2426, 2009.
[8] B. K. Chakrabarti. Kolkata restaurant problem as a generalised el farol bar problem. In Econophysics of Markets and Business
Networks, pages 239-246. Springer, 2007.
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A Congestion Game Framework for Emergency Department Overcrowding

Elizabeth Verheggen

Abstract: Hospitals often manage capacity and resource constraints by different strategies implemented at their system access points.
Emergency departments are key portals where timely access to care is a crucial quality of service and safety metric. Individuals vying
for both urgent and nonurgent care seek these services analogous to the Tragedy of the Commons archetype. In a commons, a
resource is used as if it belonged to everyone. Competition for a finite, decentralized, and shared resource risks its depletion as
individuals optimize their own objectives while impacting the choices of others. As a result, overall system performance degrades.
Ambulance diversion, extensive wait times and patient elopements, referred to as left without being seen, epitomize overutilization and
inefficient load balancing. Traditionally, many hospitals were able to build their way out of congestion. Adding capacity, however, is at
odds with concerted efforts to reign in the costs of health care. In an effort to break with this tradition, we exploited insights from game
theory to inform the development of policies for more effective capacity management related to emergency department use, and to
highlight related challenges. We examined emergency department overcrowding within the framework of a congestion game, the El
Farol Bar Game and its variants, which illustrate the Tragedy of the Commons. In a series of agent-based simulations of the games, we
found no statistically significant difference between the predictions of two games and our empirical observations during our most
congested time periods of nonurgent patient attendance. Given the new competitive social context of real-time publicly advertised door-
to-doctor wait times, and the implications that burgeoning information technologies have for the strategies invoked by providers and
patients, it seems a bar might be the best metaphor to understand emergency department congestion.

Similarly, the Kolkata Paise Restaurant Problem (KPR) is a variant of the EFBP that promises insights for ongoing work in the
catchment area of the hospital ED modeled here [117, 118]. The KPR resource utilization problem swaps Santa Fe for Kolkata and has
a similarly interesting storyline. In Kolkata where paise is the smallest Indian coin, these inexpensive and fixed rate restaurants, some
ranked better than others, were frequented by laborers. Walking to a restaurant and finding it crowded meant missing lunch. Walking to
the next restaurant meant reporting back late from lunch. In both the KPR and EFBP the number of players is macroscopically large,
however, the number of choices is also macroscopically large in the KPR problem compared with only two in the EFBP.

References (partial):
[117] Chakraborti A, Challet D, Chatterjee A, Marsili M, Zhang YC, Chakrabarti BK (2013) Statistical mechanics of competitive resource

allocation, pp 1-24. arXiv:http://arXiv.org/abs/1305.2121 [physics.soc-ph]
[118] Chakrabarti AS, Chakrabarti BK, Chatterjee M, Mitra M (2009) The Kolkata paise restaurant problem and resource utilization. Phys A

388:2420-2426
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Chapter 8
Cooperation: Spontaneous Emergence of the Invisible Hand

However, agents in the real world often have to face competition in the limited resource, which distributes in different places in
a biased manner. Examples for such phenomena include companies competing among markets of different sizes [121], drivers
selecting different traffic routes [122], people betting on horse racing with the odds of winning a prize, and making decisions on

which night to go to which bar [123].

Chapter 10
Partial Information: Equivalent to Complete Information

It is well known in statistical physics that there exist a lot of phase transition phenomena, e.g., the melting of ice (classified as
first-order phase transition) and the superfluid transition (classified as second-order phase transition); both second-order and
higher order phase transitions are also called continuous phase transitions [38]. In complex adaptive systems, phase transition

phenomena can be seen as well [7, 87,146-148].

References (partial):
123. Chakrabarti, B.K.: Kolkata restaurant problem as a generalised el farol bar problem. In: Econophysics of Markets and Business

Networks, pp. 239-246. Springer (2007).
146. Biswas, S., Ghosh, A., Chatterjee, A., Naskar, T., Chakrabarti, B.K.: Continuous transition of social efficiencies in the stochastic

strategy minority game. Phys. Rev. E 85, 031104 (2012)
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