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ideas underlying quantum tunneling, quantum computation, quantum annealing and related topics.
We start with the most basic terms such as superposition and tunneling, we then motivate the
search for quantum computers. Next we use a toy model to demonstrate the notion of annealing,
both classical and quantum. We end with a more formal review of some well-known results.
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1. Introduction

In this paper we will describe the main ideas behind
quantum annealing. We start with the most basic terms.
The text addresses the non-expert reader. In section 2

we present the notion of superposition, a particle can be
in several places or states simultaneously. Moreover, a
quantum particle has two complementary descriptions, as
a wave or as a particle. We present the well-known two-
slit experiment suggesting this duality. In section 3 we
present one of the most puzzling effects of quantum theory
which is the tunneling effect. A quantum particle can find
its way through barriers by tunneling. We suggest several
uses of such effects. In section 4 we give motivations for
the notion of a quantum computer. We start with a most
general definition of a computer. The definition suggests
the use of many apparatus as computers, whether physical
biological or chemical. This suggests the idea of a quantum
computer. The most basic model of quantum computation
is the ‘gate’ model. We show how to apply this model on
a simple search problem. We present the Grover quantum
algorithm and show how it can be used to speed-up all
classical search algorithms. In section 5 we describe the
possible construction of a real quantum apparatus. We use
the construction to present the most important ideas in
quantum computation and annealing, such as Hamiltonians,

ground states, classical and quantum annealing, adiabatic
computation, and more. In section 6 we give a bird’s eye
view on simulated annealing and quantum annealing,
clarifying the language of physicists, all this to allow the
reader to follow current research.

2. What is a Quantum Superposition?

Consider the following experiment known as the two
slit experiment1,2,3. Imagine a cannon that fires electrons
into a screen. Suppose there are two slits in the screen
(see illustration 2.1).

Illustration 2.1 : Electrons or small bullets are fired into a wall with
two slits [illustration by Isabelle Zaoui]

At the other side of the screen there is a wall. Suppose
we can detect any electron that passes through any of the
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slits and ends somewhere at the wall. We can even count
the number of electrons reaching any point at the wall.
Now let us repeat the experiment many times while
picturing the distribution of electrons reaching the wall.
What do we expect to get? We expect that the probability
to get the electrons opposite to each of the slits will be
high, and far away will decrease. We expect each electron
to pass through one of the slits, either the upper or lower,
and therefore to reach the wall at a point opposite to the
slit with high probability. It could indeed scatter a little bit
to the sides while touching the boundaries of the slit.

Well, prepare for a big surprise! On the wall we will
see a pattern of interference of two waves. The electrons
are distributed as if a wave was originally formed (as if in
some medium, say water) and was then split into two sub-
waves at the two slits, later to interfere with each other to
get the interference pattern at the wall (see illustration 2.2).

Illustration 2.2 : A wave is formed at left, then the wave is split
into two sub-waves that interfere at the wall [Illustration by Isabelle
Zaoui]

How come we made an experiment with small bullets,
the electrons, and got a wave pattern? There is no medium
in which a wave can form! From where these waves are
coming? As far as we know, the electrons should resemble
small bullets, and not waves in some kind of a medium!

This is one of the main puzzles of early 20th century
physics. Is there a way to explain the phenomena? One
way is to give up our old concepts of electrons and change
the way we think of particles, maybe electrons do have a
wave property. If electrons are indeed waves we could
easily explain the above results. Each electron is therefore
passing through both slits! The probability to find the
electron at the wall can be computed from the interference
pattern at that point. At the middle point on the wall (point
a) both wave appear with the same phase and therefore
they strengthen each other, at other points (like point b)
there exists some phase difference (1800 at point b) between
the two waves, and the waves could even cancelled out.

This could be a good explanation for the results we see,
however it opens a Pandora Box full of questions. What is
this medium in which our waves propagates? Is there a
medium? Do we need a medium? How come electrons
change their identity, for most of the 19th century
experiments electrons were assumed to behave like small
pellets (with mass and charge), how can we explain those
old experiments if we now think of the electrons as waves?
Could it be that an electron changes its identity according
to the experiment in which we try to measure its behavior?
This is even worse, a particle that has no clear identity
and behaves differently according to the experiment
presented. How can we say something about such a
particle?

Here are some commonly used terms. We say that
the electron is in a superposition of two states 0 and 1,
and we denote the states by |0> and |1> (‘ket’ 0 and ‘ket’
1, ‘ket’ as in the suffix of bracket), where |0> is ‘passing
through the upper slit’, and |1> is ‘passing through the
lower slit’. We will use the notation |0>+|1>, which denotes
the superposition of both states, the electron passes through
both slits. Such a superposition is called a ‘two state
system’, or a ‘qubit’ (quantum bit).

Trying to understand what is going on here, suppose
we put a detector between the screen and the wall (see
illustration 2.3).

Illustration 2.3 : Trying to measure the electrons in a two slit experiment
[Illustration by Isabelle Zaoui]

Will the detector identify the slit through which the
electron has passed? Yes, but we will be surprised once
more. The electrons will cease to behave like waves and
turn back into being particles. On the wall, the distribution
will be a simple one with a maximal mode near the center,
as if there were no waves and no interference. Note that
the detector is a classical measurement device, it could
measure classical particles, it could measure the fact that
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the electron is passing through one slit or the other, it could
not measure a superposition! So if we put such a device it
will show one result or the other4. So far this is reasonable.
The amazing thing is that following the measurement the
electron loses its wave identity, and goes back to being a
particle! We will say that the superposition has collapsed
into either one of its branches. The measurement device
has discovered an electron that passed through the upper
slit (a state |0>), or an electron that passed through the
lower one (a state |1>). We interfered with the quantum
superposition with a (classical) measurement apparatus, and
thereafter caused the collapse of all super-positions into a
classical ensemble of particles, a ‘mixed state’ of particles,
where half of them in state |0> the other half in state |1>.

To sum-up this section, a particle has two
complementary descriptions, as a wave or as a particle, it
will present only one of its faces, according to the
experiment done. This is also known as the wave-particle
duality. As a wave the particle is in superposition of all
pointwise states, (here only two states |0> and |1>).a

3. The Tunneling Effect

Another strange property of quantum physics is the
tunneling effect. Quantum particles can find their way
through barriers that seem otherwise impenetrable, as if
they are tunneling a hole through. When a classical particle
is being introduced with a high wall blocking its way, it
will bounce back according to its elastic properties. A
quantum particle could sometimes pass through the wall
to its other side as if it had excavated a tunnel from one
side to the other. This effect is called the ‘tunneling` effect
(see illustration 3.1).

a. And as a pointwise state it could be described by an ensemble of waves also known as wave-packet.
b. In the mathematical language we expect the wave function to be analytic.
c. We do believe today that the wave function is physical, see the Aharonov-Bohm effect1.
d. The differential equation governing the time evolution of the wave function.

Let us try to explain the effect. Clearly the phenomena
is connected to the particle’s wave property. When the
particle approaches the wall, its probability wave is also
advancing. We think of a wave function in space as having
no clear bounding, its amplitude linger continuously in all
directionb. We can say that close to the barrier a part of
this wave overshoots the wall, coming from the other side.
The fact that part of the particle’s wave is located at the
other side of the wall means that there is some probability
to find the particle there. It could indeed be a small
probability since the amplitude is decreasing exponential
fast at all margins, however this probability is non zero.

It looks like a good explanation, however on a second
thought it raises several questions. We saw above that the
particle’s wave is only a mathematical artifact, how come
we use it here as if it actually exists?c To say that the
wave function extend over the barrier, does this really
explain anything, or is it only a rephrasing of the
phenomena?

We can get away using some mathematics, we can
say that while trying to solve the Schrödinger equationd of
a particle in a potential having the form of a high barrier,
we get solutions with wave amplitudes extending beyond
the barrier’s boundary5. Alternatively we can use the
tunneling effect to demonstrate the claim that the particle
has wave properties. Instead of using the wave property as
an explanation we can use the phenomena to suggest a
wave-like behavior.

Experiments do show that such an effect indeed exists,
and can be used in several ways as we will shortly describe.
As the width of the barrier grows, the effect decreases fast,
that is, the probability to find the particle at the other side
will decrease fast. If we fire a large amount of particles
into the wall we could actually count the number of those
who passed the wall, therefore measure the size of the
effect. We can use such an experiment to prove that the
number of particles decreases exponentially fast as the
width of the wall increases.

A tunneling microscope (TMC) uses the effect to map
the surface of substances. The head of the TMC approaches
the surface, very closely but without touching it. The TMC
fires electrons into the surface, the TMC’s head and the
surface are electrically conducting, the small gap in between
constitutes the barrier the electrons should penetrate (see
illustration 3.2).

Illustration 3.1 : a wave-particle is tunneling through a barrier
[Illustration by Isabelle Zaoui]
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Illustration 3.2 : A tunneling microscope [Illustration by Isabelle Zaoui]

Some of the electrons are tunneling through this gap
creating a small electrical current. One can measure this
current, its size will be a function of the size of the gap
which is a function of the height of the surface. Hence we
can picture the landscape of the surface.

Another use of the tunneling effect is in quantum
computation. Many computational problem could be
translated into finding a minimum of an energy function
defined over the problem space. We can think of the
computation process as walking over the problem space,
looking for a minimal pointa. We will later see several such
examples. Sometimes we will bounce a small barrier
preventing us from reaching a much lower point located at
the other side of the barrier. Such barriers could be passed
if we could tunnel through. It turns out that indeed one
can use the tunneling effect to speed the computation
process.

Another apparatus that uses the tunneling effect is the
‘Josephson Junction’6. Such a junction is made of two
superconducting wires. The two wires are attached very
closely, however there is a small gap in-between. Classical
physics do not allow a current to flow through the gap.
However if the temperature is low enough, all the particles
are forming a coherent wave. The tunneling probability for
each one particle is very small, however when a large
number of particles are forming the same wave pattern,
the small tunneling probability is compensated by the large
number of particles and a current is established. At the
junction, a phase difference between the two waves is
created. It turns out that we can control this phase
difference by a DC voltage held between the wires, and
hence produce a DC-controlled AC generator.

4. Quantum Computation
A quantum computer is a quantum apparatus using

quantum physical properties to improve computation. We

need to distinguish between the use of quantum physics in
the improvement of current computer gates, or computer
hardware, and the use of quantum physics in writing new
algorithms, where we use quantum effects to get
computational benefits. Current computers use semi-
conductors based transistors, a theory which is based on
our understanding of quantum physics, however, in a
quantum computer we mean something deeper. We want
to use quantum effects to produce better algorithms. Here
quantum physics plays an important role in the logic of
computation!

This suggests the evolution of well-established terms
in computer science such as computer, computation,
algorithm, computational complexity, etc.

For computer scientists a computer is a Turing
Machine, an abstract notion invented by Turing in 19377.

A Turing machine has a ‘head` and a strip of paper.
The machine’s head has a set of inner statesb. The strip of
paper is used to read inputs from and write outputs on.
The machine’s head goes over the strip, reads a sign and
changes its inner state according to the sign read and its
previous inner state. It could then move and write a sign
in a different place on the strip. One can show that using
these simple operations one can describe all plausible
computations. In fact we humans use those exact operations
to compute, think of multiplying two big numbers using a
paper to write intermediate results.

Implicit in all this is a physical definition (and
reduction) of the notion of ‘computation’. We can say that
a certain function is computable if we can describe or build
a Turing machine that will eventually stop and print the
outcome of the function. We therefore translate the function
into a set of simple physical operations. Turing had the
idea that any computation, even a very complex one, could
be described by his machine, given enough time and a long
enough strip of paper. A Turing machine could therefore
compute what any other machine could compute,
sophisticated as it could be. This is known as the ‘Turing-
Church thesis’. The thesis has no proof, being only a
conjecture, however so far it was not refuted. We cannot
find an example of a computation that could not be done
by a Turing machine and could be done by some other
machine. What would then be ‘some other machine’? Let
us dwell on this idea.

a. A minimal point is a point where the value of the function is minimal with respect to its values at neighboring points (local minima) or a
point where the value of the function is minimal with respect to its values at all space points (global minima).

b. You can think of the head’s states as a short term memory.
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We will present here a somewhat different physical
definition for the notion of a ‘computer’8.

A computer is a physical or biological or chemical
apparatus satisfying the following conditions:

1) The apparatus has a computational basis in its input
and in its output.

2) The apparatus goes through an evolution from
some initial time to a predetermined final time.

What is this ‘computational basis’? It’s a set of
physical distinguished states of the apparatus that we can
read off as far as our resolution power allows us. We can
mark the first state by 1, the second by 2, etc. We can
then use the computational basis at the input to ‘write’ the
data on which the apparatus will operate. We can ‘read’
the result (of the computation) off the computational basis
at the output, it could be the same computational basis or
a different one.

The following example stresses the idea that a
computer could be a most general device. Suppose we want
to compute the average of three numbers k, m and n. Our
‘computer’ will be a tank, separated into three
compartments. We will fill the tank with water. Suppose
we warm the first compartment up to k degrees, the second
up to m degrees, and the third up to n degrees, see
illustration 4.1.

Illustration 4.1 : A thermodynamic computer computing the average of
three numbers [Illustration by Isabelle Zaoui]

Now let us remove the two barriers dividing the tank
into three. Wait for a while to let the tank ‘compute’. The
temperature in the tank will eventually reach an average
temperature. All is left to do is measure the average
temperature which is the number we want. The
‘computational basis’ here (the same at the input and

output) is the set of macro-states, those states (of water
molecules) that can be identified by a thermometer, i.e. by
their degree. We waited for a while to let the system reach
a new equilibrium, this is what is meant by the second
part of the definition above, i.e. we let the system evolve
up to a predetermined final time. Clearly this is not an
efficient way to compute averages, however the example
stresses the wide and physical interpretation we can give
the notion of a ‘computer’.

The definition above could be applied to a wide range
of ‘machines’, be it biological, physical, chemical, almost
anything. Indeed almost anything could be a computer, the
question is therefore; given an apparatus, what would be
the family of functions that is natural (or easy) to compute
with this apparatus? Thermodynamic machines are most
natural if we want to compute averages. Alternatively we
can search for the ‘computational power’ of physical laws,
these are the computational benefits we can gain by using
these physical laws. For example what could we easily
compute using gravitation? This is indeed a legitimate
question.

One of the principles of quantum physics that we can
use for computation is the superposition. Perhaps we can
implement several tasks in parallel, a superposition of
computations! David Deutsch, one of the fathers of
quantum computation describes the quantum computer as
a superposition of computers, each is doing its task
separately and at the end they all interfere to give a final
results2. Indeed we shall use this metaphor.

The quantum computer cannot help us in solving
problems that cannot be solved by a classical computer
such as the halting problema,7,9. However, it could be that
some problems that are hard to compute by a classical
computer will turn out to be easier for the quantum
computer. One of the most important problems in the theory
of cryptography is the problem of factoring a number into
its prime componentsb. Factoring is known to be a hard
problem for a classical computer; increasing the number
we want to factor will exponentially increase the number
of resources we need, the resources are time and memory
space. For example adding one more digit to the number
we need to factor will multiply the resources by 10.
Encryption of information in military and financial systems
uses factorization-based algorithms. A huge number (several
hundred decimal digits long) is very hard (time consuming)

a. Consider a universal module with two inputs and one output, at the first input we insert the code of any machine, at the second any data,
the output of the universal module will tell us if that machine while processing that data will eventually stop. It turns out that such a
module is impossible to construct.

b. What are these prime factors? For example 51 is 17*3, where 17 and 3 are prime numbers and cannot be factored any more.
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to factor into its primes, however we can easily present
such a number by multiplying several big primes. This is
known as a ‘trap door’; it is easy to create such a number,
however very hard to back engineer. It turned out that
quantum computers are good at factoring numbers, therefore
quantum computers can easily decrypt such codes. This is
one of the reasons for the great interest in quantum
computation.

We will try to explain in a very schematic way the
most basic working of a quantum algorithm10. We will not
go into the physical details of the gates. Scientists are not
sure yet what would be the natural basic component, the
quantum ‘transistor’ of such a computer.

Let us start with a very simple example, the addition
of two bits, what is known to computer scientists as a XOR
gate. In the quantum context it is called a CNOT gate for
reasons that will become clear immediately. Take a quick
look at illustration 4.2.

Illustration 4.2 : A XOR or CNOT quantum gate

The upper bit (actually qu-bit) is controlling the lower
one, on the lower one there is an X gate, a NOT gate.
This is the meaning of the black dot on the upper line,
and the vertical line between the two horizontal ones. If
the upper qubit is in the state |0> nothing is happening. At
the upper output we will still get |0>, and at the lower
output we will get whatever we inserted, the X gate is not
activated. Now, when the upper qubit is in state |1>, it
activates gate X on the lower qubit. The gate X will swap
|0> by |1>. If we check the operation of this CNOT gate
on each of the possible inputs we will get:

|0>|0>————> |0>|0>

|0>|1>————> |0>|1>

|1>|0>————> |1>|1>

|1>|1>————> |1>|0>

It is easy to see that the output of the second bit (the
lower one) is the sum modulo 2 of the two input bitsa,

which is also the action of XOR. Now, since the above
gate is a quantum one its input accepts a superposition of
all four cases. The quantum gate will process the above
four computations in parallel, in one step. Several such
primitive quantum gates do exists10.

Similarly we can quantum-transform other classical
gates. The NAND gate, (an AND gate followed by a NOT
gate) also known by physicist as the Toffoli gate11, has a
similar quantum counterpart in the form of CCNOTb. It is
well known that the NAND gate is universal for classical
computation, in other words we can write any logic gate
using only NAND gates, hence its importance for classical
and quantum computation.

Let us now build a quantum computer. Suppose we
have a classical computer, write the computation using only
NAND gates. Replace any NAND gate by its quantum
counterpart CCNOT. Our new quantum computer will carry
out the same computation, only now all operations are
carried out simultaneously. Let us present a computational
problem where such a quantum computer could be helpful.

Suppose we are given a non-ordered array of inputs,
it could be names and addresses. Suppose we need to find
the address of someone. Since the array is not ordered we
might have to go over the whole list before we reach the
person whose address we need. This is like searching for
a needle in a haystack. Such a problem demands a large
set of simple checks. Each such check could be very easy
however there is a large number of them.

At the input to the computer we will introduce a
superposition of all states representing integral numbers
from 1 to N, the size of the array. Now a classical computer
will compute a result for each of the inputs. It will write 0
on some special bit (a flag bit) to denote that this input
(array cell) is not the one we are looking for (is not a
solution for our search problem), and it will write 1 on
this flag bit to denote that the corresponding input number
is indeed a solution for the search problem. A classical
computer will go over each of the inputs, one by one. Our
quantum computer will compute all of the above using only
one step. At the output of the quantum computer we will
get a huge superposition, each branch contains the values
of two registers, one holds a serial number of one of the
array’s cell, the other holds the result of the search on that
cell, see illustration 4.3.

a. Meaning 1+0 = 1 and 1+1 = 0.
b. A CCNOT gate is a controlled CNOT, as if the gate in illustration 4.2 is controlled by another qu-bit, therefore CCNOT is a three qubit

gate.
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Illustration 4.3 : A classical computer transformed into a quantum one

In the example (see illustration 4.3) cells number 1,
17, and 451 are indeed solutions to the search problem, 3
is not. This huge superposition is the outcome of one
computational step, this is the power of quantum
computation. This looks very promising. All we have to
do now is measure the superposition and find those places
where the flag register holds the number 1.

Well, not so simple, how can we read the
superposition? If we attach a measuring device the whole
superposition will collapse into one of its branches. Now
since we have vastly more branched with 0 at their flag
register, we will probably get something like ‘352 is not a
solution’. We could have reached such a result by a simply
guess, for that we don’t need a quantum computer. Note
that in the superposition above all amplitudes are equal.
We have to somehow increase the amplitudes of all the
branches with the 1 flag register, while decreasing all
others. But how can we do that, we have no idea where
they are placed in the array (otherwise we would have had
the solution). This is like having a probability amplifier,
or an amplitude amplifier. Such an amplifier cannot go over
all the branches one by one, since then it will resemble a
classical computer. The quantum operations that are allowed
in quantum computation are all global. Any action that
separates between some of the branches will cause the
collapse of the computation to a classical one.

Could we build such an amplifier? Classically this
sounds an absurd! Consider a virtual opaque box where I
have many beads, one is colored red, all the other black.
For some reason I can draw out only one bead at a time. I
want the red one. It could indeed be that I would have to
draw out almost all the beads before I reach the red one.
Suppose now I have an algorithm by which I shake the
box, turn it upside down and shake again, perhaps followed
by some other operations. All the actions on the box are
global ones, on all the beads simultaneously. Suppose this
series of global actions increases the probability that I will
pick the red one the next time I try, this is the algorithm
we need!

Surprisingly, such a quantum algorithm do exists and
is known as the ‘Grover algorithm’12. The amplification is
made by several iterations. Each iteration has two steps.

Let us try to demonstrate one such iteration for a two qubit
quantum computer. Our superposition has four states
|00>+|01>+|10>+|11>. Suppose now the third state |10> is
the one we are looking for. Following the above arguments,
the state |10> should be marked by a flag register in a
state |1>. Therefore at the input to the Grover algorithm
we should have:

|00>|0>+|01>|0>+|10>|1>+|11>|0>

The first step of the Grover iteration uses the flag
register to mark the state |10> by a minus sign:

|00>|0>+|01>|0>+|10>|1>+|11>|0> ————>

|00>|0>+|01>|0>–|10>|1>+|11>|0>

What is the physical meaning of such a state? We
can think of a wave function that splits into four waves
(as in the slit experiment above) whereas the third one has
a phase shift (is lagging by) of 1800. How do we carry out
such an operation? It can be done using the CNOT gate
we introduced above. Observe illustration 4.4 below, note
that the lower qubit is in the state |-> which is |0>–|1>.

Illustration 4.4 : a CNOT gate for marking a state

If the X (NOT) gate is being activated (when the
upper qubit is in state |1>), the lower qubit is marked by a
minus sign:

|0> – |1> ———> |1> – |0> = – (|0> – |1>),

where the minus sign is attributed to the whole branch of
the superposition at the output. You have probably guessed,
the upper qubit of the CNOT gate is the flag bit that testify
that this branch is a solution. In this way we can
change the phase of the marked branch without any
knowledge of its identity. This was an exercise in quantum
algorithm!

The next step of the iteration is a reflection operation
over the average of all amplitudes. In the case above the
sum of the amplitudes is 1/2+1/2–1/2+1/2 =1 and the
average is ¼. A reflection of the amplitudes over ¼ will
result in the cancellation of three amplitudes and the
amplification of the fourth one to unity. The amplified one
is exactly the third one (see illustration 4.5 below). Now
is the time to measure the superposition. It will definitely
yield the third one, the one we were looking for.
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Illustration 4.5 : The Grover algorithm on a two qubit superposition

This second step of the Grover iteration is also a
global action, it operates on all branches simultaneously,
and therefore is legitimate in the quantum context (we will
not go here into its details).

For the two bit quantum computer one Grover
iteration was enough, for a three qubit superposition, (a
superposition of eight states) we will need two Grover
iterations. If we continue to iterate we might deteriorate
the relation between the marked state and the other states.
In general, if the array has N states and there is only one
marked solution, we need to iterate √N times before we
can be sure that the marked state has a considerably high
amplitude. In a classical computer we might need N
operations to find the solution since the array is not sorted.
The quantum computer will therefore be more efficient.
The decrease in the computation time was due to the fact
that we have introduced a new physical element into the
algorithm, the superposition. We can use this method to
speed-up any classical computation. For several other
problems this will not be the best way to use quantum
computation. In fact, for the problem of Factoring there is
a better algorithm suggested by P. Shor13. The algorithm
uses sub-modules that can identify hidden symmetries in a
function, this is closely related to the Fourier Transform
of that function. Its complexity is of the order of a
polynomial of degree three in the number of decimal digits.
This is exponentially better that what we can achieve today
using any classical algorithm.

All in all this suggests that some problems that are
hard to compute using a classical computer could be easier
to carry out on a quantum computer. Note however that
the exponential difference of efficiency for Factoring is only
ad-hoc. So far we know of no classical algorithm that can
solve Factoring efficiently, that is without a need for
resources that grow too fast (exponentially). We have no
proof that Factoring should be hard on a classical computer.
As for the Search problem it is indeed easy to prove the

difference of efficiencies, however such a difference is
consider minor. In other words improving the efficiency
from N to √N does not change the `complexity class’ as
defined in computer science.

5. Quantum Computation by Annealing

In the following we will suggest a quantum apparatus,
a quantum annealing computer. In this section we will use
a somewhat schematic toy example to demonstrate the
annealing process, both classical and quantum. In the next
section we will use a more formal language to review some
recent results.

Here is a description of our virtual ‘quantum
microprocessor’.

Imagine an ensemble of elements, such that each can
be in one of two states, 0 or 1. Assume there are couplings
between some of the elements. For example we can think
of small magnets, each has a north and a south pole. A
north pole is attracted to a south pole. If we wish to attach
two such magnets such that a north pole is close to a north
pole we will have to invest some energy, when released
they will go back to their natural state, a north pole side
by side with a south pole. Suppose we denote a north pole
by 1 and a south pole by 0 then the two magnets will stay
at 01 or 10 state with no energy invested. We will call
such a conjugation or coupling a negative one (this is only
a name). Now suppose those elements have some other
type of couplings, a positive one, in which we can hold
each pair together at the state 00 or 11 without investing
any energy, for such a coupling we will have to invest
some energy to hold the elements in the state 01 or 10.

Suppose now we have an array of such elementsa,
organized in a 2 dimensional grid. Suppose we can pre fix
the type of coupling between any two elements. So any
two elements with a negative conjugation will probably be
found in a state 01 or 10 and any two elements with a
positive conjugation will be probably found in a state 00
or 11. Why probably? Well, it could be that one element
has a positive conjugation from one side and a negative
conjugation at the other side, it could be that the constraints
from one side oppose the constraints from the other side,
we will say that such an element is in a state of frustration.
It could be that it is better to hold one such element ‘against
its will’ (at least partly) in order to satisfy several other
conjugations.

At the illustration below (illustration 5.1) if the state
of the element in the center is 0, it satisfies the demands

a. You can think of an ensemble of such magnet monopoles, in reality magnets are dipoles coupling two monopoles.
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of the conjugations from left, right and below. It will not
satisfy the upper conjugation.

Illustration 5.1 : What is the preferred state of the center element?

So we will have to invest some energy to hold it in
its position against the detraction of the upper element.
However, if we try to set the state of the center element to
be 1, it will not satisfy the demands of 3 conjugations (left,
bottom and right), and we will have to invest much more
energy to hold it in that (the 1) position. Clearly the system
prefers the less energetic solution, that is, the configuration
where the center element is in state 0. It is therefore clear
that for each possible configuration of the elements we can
compute the energy needed to hold that configuration
stable. The system by itself looks for the configuration with
lowest energy.

We will now demonstrate how such a grid can define
a computational problem, and how the lowest energy
configuration of the elements defines the solution to that
problem. First look at the following game-theoretical
example. Suppose there is a factory where two types of
workers are hired, red and green. The workers are ordered
in a grid such that between each two neighboring workers
there is a professional relationship. The professional
relations are important to the efficiency of the factory. Some
of the relations are monochromatic, in such case the two
workers have to be of the same color, both green, or both
red. Some of relations are heterochromatic and therefore
the two workers having those relations have different colors,
one red the other green. All professional relations are
predetermined and define the essence of the factory. The
problem is to place the workers such that as much as
possible professional relations are satisfied.

Let us try to state the above example in a
mathematical language. Assume we have n variables
X1,…,Xn. Suppose the variables are ordered on a grid. Each
variable ‘knows’ its neighbors. We assume each variable
is Boolean (0 or 1). Suppose also we have a set of
equations, for example, Xi=Xj for the neighbors i and j,

and Xl ≠ Xk for the neighbors l and k. We are looking for
a configuration of the variables solving as much equations
as possible. For example assume we have 5 variables
X0,…,X4 and 4 equations:

X1 ≠ X0, X2 ≠ X0, X3 = X0, X4 = X0

We can try several configurations, it could be that
some configurations do not satisfy some of the equations,
but we search for those configurations that satisfy the most.
Why not try all possible configurations? Clearly if there
are n variables there are 2n configurations, we could work
very hard even for a low number of variables. Is there a
way to solve such problems? The system of elements we
described above is exactly constructed for that purpose.
For each Boolean variable we match an element of the
system. We will build the couplings between the elements
according to the above equations. For an inequality we will
use a negative coupling, and for an equality we will use a
positive coupling. We actually write the equations into the
‘computer’ using the couplings, in other words the
couplings are turned into physical constraints. The above
example (of 5 variables) is solvable using the system of
elements described in illustration 5.1 above. All we need
is to match X0 to the element at the middle and X1,…,X4
to the elements above, on the right and clockwise. The
system will stabilize on a solution. The solution is read
off the configuration of the elements after the system had
stabilized. As lower is the energy of the system, the better
is the solution. Satisfying the conditions does not cost
energy, only dissatisfaction cost energy. So we need to force
the system into a lower energetic state, as lower as we
can. How can we do it? By putting the ‘computer’ in a
refrigerator. The system will lose its energy and thereafter
we can pull the ‘computer’ out and read the final
configuration. Will this always work?

We should be careful; if we look at the space of all
possible configurations we can compute an energy level to
each point, the minimal energy needed to hold that
configuration stable. We can even picture an energy
landscape of the space, see illustration 5.2.

Illustration 5.2 : The energy landscape

Our ‘computer’ walks over the space looking for a
minimum point. We have to differentiate between local and
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global minima. If we cool the system too fast the computer
might get stuck in a local minimum. To get out of such
local minima one has to warm up the system, give it enough
energy to climb out. Later we can re-cool the system, our
goal is to reach a lower energy point, possibly the global
minimum. The process resembles an annealing one,
therefore called ‘simulated annealing’.

So far everything looks as if it could all be classical.
We could perhaps implement the ‘computer’ using some
set of strings and springs. What is quantum in all this?

Imagine now a similar quantum system, where the
elements are qubits, in particular we can use electrons’
spinsa. Spin is a natural two state system. The couplings
between the spins might force them to align or anti-align
locally. The evolution of the system from its initial state to
its final state will be governed by a quantum Hamiltonian.
Well, how could all that help us?

During evolution time we can use several quantum
principles, one is known by the name ‘adiabatic
computation’. Suppose we have a similar spin-computer
as above solving a most simple problem, not the problem
we want to solve but a different one which is very simple
(where we know its solution). We write the constraints of
that simple problem into the set of couplings, and this is
our initial Hamiltonian. Assume also that we start with a
configuration of spins that solves those constrains, i.e. a
ground state of the initial Hamiltonian. Now let us do a
very strange thing, we will change the set of couplings,
very slowly from the set defining the simple problem to
the set defining the problem we want to solve, in other
words we are changing our initial Hamiltonian towards a
final Hamiltonian, known also as the problem Hamiltonian.
Changing the set of couplings, very slowly, is like changing
the computer itself (its hardware). The principle of adiabatic
quantum mechanics statesb,14;

If we start from the ground state of an initial
Hamiltonian and evolve the Hamiltonian slowly enough
towards a final Hamiltonian, then the ground state will
miraculously evolve into the ground state of the final
Hamiltonian, the solution we seek!

This is a quantum magic! We start with a computer
that solves a simple problem, the initial state of the system

is a solution of this simple problem, we change the
computer itself (its hardware), until it defines a new
problem. We don’t have to worry about the solution, it
will show up, as long as we do everything slowly enough.

It turns out that such a system is even more efficient
than a classical one. In an adiabatic computer the
computational complexity is measured by the time needed
to evolve the system from its initial state to its final state.
We are forced to evolve slowly. If we try to rush the
process we will end up in a configuration which is not the
solution we want. Therefore the minimal time needed is
the computational complexity. If we compare this minimal
time to the classical complexity we will find that the
adiabatic computer is indeed better for a large family of
problems. It is also a known fact that the adiabatic
computer is equivalent to the standard gate–type computer
that we discussed above (in section 4)15.

Another quantum principle we can use during the
evolution towards the final state is the tunneling effect (see
section 3 above). Adding some quantum noise, (a transverse
field) our spin-computer can cross energy barriers in its
way to lower energy points. Such a computer is named a
quantum annealing computer (see the discussion below).

6. A Bird’s Eye View of Quantum Annealing

Let us formalize our discussion above in the language
used by physicists. This will enable the reader to follow
current research. For a recent and most general review of
the topic see16 (for a more pedagogical introduction see17).

Our computer, the machinery used to solve the
computational problem is coined ‘Hamiltonian’. This could
be the set of rules governing the apparatus’ behavior, we
can also think of the Hamiltonian as the algorithm, or the
software, or even the physical hardware. The Hamiltonian
is acting on a space of states, taking an initial state to a
final state, which is the solution to the computational
problem.

It is also useful to think of the Hamiltonian as an
energy function. In fact we write the energy function such
that the lowest energy state, the ‘ground state’, is the
solution we seek (see section 5 above). The Hamiltonian,
once finding this ground state should leave it as it is (the

a. A spin is a two state system of an electron, spinning both clockwise and anticlockwise. Pick any direction, align a spin-measurement device
in that direction, and you will find the electron spinning parallel or anti-parallel to that direction. The electron is therefore in a superposition
which collapses to either one of its branches, whenever a measurement device is presented. Such a quantum measurement is known as a
Stern-Gerlach measurement.

b. In fact the adiabatic principle is much more general and this is its interpretation to the theory of computation.
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computer stops processing when finding a solution). Such
a state which is left invariant under the Hamiltonian is
coined an ‘eigenstate’. Writing the Hamiltonian is no more
than writing the set of clauses the solution should satisfy.
We saw an example above with a small number of
equations and a simple energy function (see illustration 5.2).
The fact that we can write a set of clauses does not mean
that we know how to solve it, writing a set of equations is
different than solving it. We can indeed construct a
Hamiltonian, i.e. can build the machinery that is equivalent
to the set of equations, however to find the solution we
have to turn on the machinery and let it process the initial
data until it reaches the solution, the ground state. In the
language of computer scientists we say that the Hamiltonian
can be built ‘efficiently‘, or the circuit complexity grows
only polynomialy with the size of the problem space.

If our Hamiltonian is indeed an energy function of
some physical system then all we need is to cool the system
into its ground state. This is the main intuition behind the
annealing process.

There are several ways to reach the ground state.
Classical annealers use a ‘gradient descent’. If we look at
the energy landscape, gradient descent resembles a blind
man’s walk. Using his stick the blind man can sense the
direction of the gradient. Similarly, we can start with any
configuration, a candidate for the ground state, we can
compute the energy of that initial state. Next we make a
small perturbation on the candidate. We then check the
energy of this perturbed state. If the energy is lower than
the energy of our initial state then this perturbed state is
our new candidate. We can go on like this until we reach
a minimal state. This is a state whose perturbations in all
directions only raise the energy. The problem with such a
gradient descent is obvious, we could end in a ‘local
minimum’, far from our true ground state, the ‘global
minimum’ whose energy is the lowest (see illustration 5.2).
The way to solve this problem is to add some heat (noise)
into the system. We must let the system overcome those
local minima. The system must continue exploring the
landscape. This is the question of exploiting versus
exploring. The way to do it is by letting the system explore
a state even if the energy of that state is higher than the
energy of the current candidate. So let us improve the
gradient descent algorithm, we can toss a coin, and with
some probability let the algorithm go into a perturbed state
even if its energy is higher. This is very similar to an
annealing process, in which we alternate between long
phases were we cool the material, and short phases where
we warm it up. A system that explores all possible

configurations, not necessarily with the same probability,
is coined an ‘ergodic system’. We therefore improve the
ergodicity by adding this stochastic phases.

Let us control the amplitudes of the warm ups; at the
beginning of the evolution we can let it be relatively high,
reducing the amplitude towards the end; let the probability
to go to a configuration with a higher energy be
proportional to Ee β− Δ  where ΔE is the increase in the
energy, and β is proportional to 1/T (where T is the
temperature)18. Therefore for room temperature (high
temperature, low β) the probability to visit any
configuration will be relatively high and the system will
be ergodic, for low temperature (high β) the probability to
jump to higher energetic states will decrease sharply.
Therefore by controlling the rate of cooling the system,
we also control the warm ups (and exploration).

Suppose the temperature T does not decrease faster
than the order of n/log(t) where n is the dimension of the
system and t is the time. It was proved in19 that such a
protocol will end with the right ground state. This algorithm
is known as ‘simulated annealing’. The minimal evolution
time needed to assure that the system will end in the ground
state is the ‘computational complexity’ of the algorithm.

Another way to reach the ground state is by using
‘adiabatic computation’. We start with an initial simple
Hamiltonian having a simple ground state that we know
how to construct. We evolve the system very slowly into a
final Hamiltonian also known as the ‘Problem
Hamiltonian’. This is like evolving the computer from a
very simple one into our more complex one. If the
evolution is slow enough (and we have started from the
ground state of the initial Hamiltonian) the quantum
adiabatic theorem says that the final state will be the ground
state of the final Hamiltonian, i.e. the solution.

Yet another way to reach the ground state is by
‘quantum annealing’. We replace the warm ups short
phases of the simulated annealing by a ‘fluctuation field’.
This is a small component we add to the Hamiltonian. The
state governed by the Hamiltonian behaves as if it ‘looks’
around and explore neighboring configurations, or even
tunnel through barriers. One can control the amplitude of
the fluctuation field, reducing it towards the end of the
process, this is similar to a simulated annealing algorithm
only now the control knob is a different one. It was proved
in20 that such a process is bound to yield the ground state.
Again, the amplitude of the fluctuation field should decrease
no faster than 1/t1/n. This is similar to the computational
complexity time for simulated annealing, and even a little
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bit bettera. Quantum annealing is usually done in low
temperature, and sometimes also adiabatically.

For some specific computational problems one can
show a clear preference for quantum annealing over
simulated annealing. In21 a toy model of 8 qubits was
tested. The quantum annealing algorithm yielded the ground
state with much higher probability than that of a simulated
process with the same time scheduleb. In22 a traveling
salesman problem was discussed for 1002 cities, there the
error rate (between the known solution and the final state)
reduced much faster for quantum annealing as compared
to the error rate for simulated annealing.

In the following several paragraphs we discuss a map
between statistical mechanics and quantum adiabatic
computation presented in23, this will demonstrate some of
the principles discussed above. Consider an ensemble of
classical elements satisfying a set of clauses similar to the
set presented above in section 5. This is an ensemble of
n-configurations (n-tuples where n is the size of the system).
Assume also that the number of configurations of the same
type is inversely proportional to the energy of that
configuration (the energy needed to hold that configuration)
with an exponential factor; e–βE. This means that there are
exponentially more elements with low energy than elements
with high energy. Such a distribution is known as the ‘Gibbs
distribution’ 24. When sampling from such an ensemble we
will probably get a configuration with very low energy, or
a configuration that solves many clauses.

Assume now that this coefficient β is high. This will
increase the probability to end with the configuration we
need. In fact this is what we get when we cool the system.
We increase the probability to get the low energy states.
However at room temperature the probability to get any
of the configuration is the same, otherwise we could have
easily guessed the solution. Therefore we can imagine that
β is a function of temperature, at room temperature β is
low and the exponent is flat, and at low temperature β is
high and the exponent is sharp.

Let us now map everything into the quantum realm.
The above ensemble of elements are ‘mixed states’ in the
sense discussed in section 2. A measurement process maps
a superposition into a classical state, here we need an
opposite map, from mixed states into superpositions. In
fact we can map our ensemble into a superposition by

replacing probabilities with amplitudes (at least on the
paper by square rooting all probabilitiesc). Now we need
to find an initial Hamiltonian such that the room-
temperature mixed state is its ground state, and a final
Hamiltonian such that the low temperature mixed state is
its ground state. It is easy to find a Hamiltonian for the
room-temperature mixed state, since such a state has almost
equal amplitudes. As for the final Hamiltonian this could
be some variant of our problem-Hamiltonian. Next we can
use adiabatic computation, slowly evolving into the ground
state of the final Hamiltonian. All in all we have started
with a classical ensemble of particles and mapped the
classical search into a quantum adiabatic process. It turns
out that the minimal time needed for such an adiabatic
computation is close to the time needed for a classical
simulated annealing computer.

Consider again our grid of spins discussed in section
5 above, and let us take it one step further. Assume each
of the spins ‘knows’ all the others. Each spin is coupled to
all other spins, like a network of connections. Above we
assumed only positive +1 or negative -1 couplings between
the spins, however suppose now the couplings are taken
randomly from a normalized Gaussian distribution. We pre-
fix the strength of each of the coupling by random sampling
from a Gaussian distribution, only then we let the system
evolve, this is known as a ‘quenched’ randomness. Such a
system is known as the Sherrington Kirkpatrick model25.
We can define a similar model where each spin only
‘knows’ its nearest neighbors on the grid, and this is known
as the Edwards Anderson model26. Such models have the
property that each of the spins sees the same similar set of
couplings, and we can therefore replace the spins’
interactions with some mean value, hence the name ‘mean
field theory’27.

We coin such grids ‘spin glasses’, they are glass-like
amorphous. The spins show many irregularities, the energy
landscape has many local minima with high barriers in-
between. It is hard for the system to ‘relax’, that is, to
pull itself out towards a global minimum. It will indeed
eventually relax and therefore these local minima states
are also known as ‘metastable states‘. This resembles the
process of ‘vitrification’ where a substance is cooled by
some fast procedure to produce a glassy type solid. The
glassy solid is extremely amorphous. It will eventually relax

a. The above computational complexity estimations are general, for some specific problems one can get better results.
b. Since the model has low dimension one can compute the solution in advance. The model only compares the complexity times of both

models, the classical and quantum annealing.
c. The coefficients of a superposition are the amplitudes, by squaring the amplitude we get the probabilities to collapse to the corresponding

classical state.
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into its crystalline phase but this might take a very long
time.

We can compute the correlations between the
configurations of those sets of local minima, or their
‘overlap’. These correlations are also known as ‘order
parameters’ of the system, they characterize the system. A
very simple system with zero external magnetic field and
low temperature below some ‘critical point’ will find itself
with all spins up or all spins down, therefore two final
configurations with an obvious simple symmetry. In
contrast, a glassy state will be much more complex,
breaking this symmetry28.

What if we now try to use a quantum annealing
process by adding some fluctuation - a ‘transverse field’ -
to our Hamiltonian? Could we reintroduce exploration into
the system? Will the system be able to tunnel its way
through the landscape of many local minima and high
barriers?

The story of quantum annealing begins at exactly that
point some 30 years ago when such Hamiltonians were
being introduced and investigated. In29 it was shown that
indeed the transverse field brings back ergodicity into the
system, the number of order parameters reduces (in the
language of physicists Replica Symmetry Breaking is lost),
as if the system is a much simpler one. This suggests that
the transverse field helps the system ‘look’ over barriers.

To sum up this section: our machinery has several
control knobs, one for the fluctuation field, one for the
cooling process, and one for the pace of the adiabatic
evolution. On this ‘phase space’ of control knobs we can
select the path we want. Quantum annealing is a more
general concept than adiabatic computation involving the
control of the fluctuation field and the control of the
adiabatic evolution. A D-wave computer30 uses both
processes, adiabatic and annealing, on a superconductor
hardware at a very low temperature.

7. Concluding Remarks

We wish to conclude with some philosophical insights.
Underlying all the above is a map between mathematical
abstract computational problems and physical machinery
designed to solve those problems. Turing was the first to
define the abstract notion of computation in terms of a
physical machine, starting with some initial condition and
ending in a final state that defines the solution. Under the
above map, computational problem are mapped into
Hamiltonians, solutions are mapped into ground states,

computational complexity is mapped into relaxation time
etc.

The main motivation for the search for quantum
computers stem from the need to reduce the computational
complexity. If computation is physical it is only natural to
introduce physical principles into the computational process.
In quantum computation theory we introduce quantum
principles such as superposition and entanglement.
Introducing physical principles into algorithms change the
way we think of algorithms.

As an example of the intricate relation of abstract and
physical computation observe the problem of scaling-upa.
Problems should be scaled up such that the (circuit)
complexity of the Hamiltonian, and the relaxation time will
not grow too fast. For example, in the adiabatic computer
the (abstract) computational time-complexity is mapped into
the gap between the two lowest energy eigenstates of the
Hamiltonian (a physical property). If the gap decreases too
fast we have to slow down the computation to prevent the
system from jumping into the higher energy state.

In particular we discussed the notion of quantum
annealing. Quantum annealers can somehow ‘see’ behind
barriers, maybe tunnel through. Such computers can re-
introduce ergodicity into a complex energy landscape
having many local minima. It is therefore plausible that
such computers can reduce the computation (relaxation)
time for several computational problems (see the examples
above). Here again we convert a physical property into a
computational one.

Quantum annealing was introduced some 30 years ago
in the context of statistical mechanics, condensed matter
physics, spin glass theory etc. It was much later presented
as a tool in quantum computation. Yet there are many open
questions as to the relation of quantum annealing to
quantum computation.
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