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This expository paper reviews some of the recent uses of computational algebraic geometry in
classical and quantum optimization. The paper assumes an elementary background in algebraic
geometry and adiabatic quantum computing (AQC), and concentrates on presenting concrete
examples (with Python codes tested on a quantum computer) of applying algebraic geometry
constructs: solving binary optimization, factoring, and compiling. Reversing the direction, we also
briefly describe a novel use of quantum computers to compute Groebner bases for toric ideals.
We also show how Groebner bases play a role in studying AQC at a fundamental level within a
Morse theory framework. We close by placing our work in perspective, by situating this leg of the
journey, as part of a marvelous intellectual expedition that began with our ancients over 4000
years ago.
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1. Introduction

The present paper tells the new story of the growing
romance between two protagonists: algebraic
geometry1 and adiabatic quantum computations2,3.

An algebraic geometer, who has been introduced to the
notion of Ising Hamiltonians4, will quickly recognize the
attraction in this relationship. However, for many physicists,
this connection could be surprising, primarily because of
their pre-conception that algebraic geometry is just a very
abstract branch of pure mathematics. Although this is
somewhat true–that is, algebraic geometry today studies
variety of sophisticated objects such as schemes and stacks
at heart, those are tools for studying the same problem
that our ancients grappled with: solving systems of
polynomial equations.

A more known relationship is the one between
algebraic geometry and classical polynomial optimization
which dates back to the early 90s, with the work of B.
Sturmfels and collaborators5,6. The application of algebraic
geometry to integer programming can be found in7,8,9,10.
We take this occasion of an invited paper to introduce both
classical and quantum optimization applications of algebraic
geometry (the latter, conceived by the authors) through a
number of concrete examples, with minimum possible
abstraction, with the hope that it will serve as a teaser to
join us in this leg of a marvelous expedition that began
with the pioneering contributions of the Egyptian, Vedic,
and pre-Socrates Greek priesthoods.

2. The Profound Interplay Between Algebra
and Geometry

In mathematics, there are number of dualities that
differentiate it from other sciences. Through these dualities,
data transcend abstraction, allowing different interpretations
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and access to different probing approaches. One of these
is the duality between the category of (affine) algebraic
varieties (i.e., zero loci of systems of polynomial equations)
and the category of (finitely generated with no nilpotent
elements) commutative rings:

{affine algebraic varieties} –~ {coordinate rings)op

(2.1)

Because of this equivalence, we can go back and forth
between the two equivalent descriptions, taking advantage
of both worlds.

Example 1 Before we go any deeper, here is an
example of an algebraic variety

V := the unit circle in 2. (2.2)

The very same data (set of points at equal distance
from the origin) is captured algebraically with the
coordinate ring

2 2[ , ] 1x y x y+ −  = polynomials, in x and y;
mod (x2 + y2 – 1):                    (2.3)

As its name indicates, the coordinate ring provides a
coordinate system for the geometrical object V.

We write [x0, .... , xn–1] for the ring of polynomials
in x0, ...., xn–1 with rational coefficients (at some places,
including the equivalence above, the field of coefficients

 should be replaced by its algebraic closure! In practice,
this distinction is not problematic and can be safely swept
under the rug). Let S be a set of polynomials

0 1, ..., nf x x −⎡ ⎤∈ ⎣ ⎦ . Let V(S) denotes the algebraic variety
defined by the polynomials f S∈ , that is, the set of
common zeros of the equations f = 0, f S∈ . The system
S generates an ideal I by taking all linear combinations

over 0 1, ..., nx x −⎡ ⎤⎣ ⎦  of all polynomials in S; we have
V (S) = V (I): The ideal I reveals the hidden polynomials
that are the consequence of the generating polynomials
in S. For instance, if one of the hidden polynomials
is the constant polynomial 1 (i.e., 1∈I ), then the
system S is inconsistent (because 1 0≠ ). To be
precise, the set of all hidden polynomials is given
by the so-called radical ideal I , which is

defined by { }1, ...., : r
ng x x r g⎡ ⎤= ∈ ∃ ∈ ∈⎣ ⎦I I .

We have:

Proposition 1 ( )( ) =I V I I

Of course, the radical ideal I  is infinite. Luckily,
thanks to a prominent technical result (i.e., Dickson’s
lemma), it has a finite generating set i.e., a Groebner
basis B, which one might take to be a triangularization
of the ideal I . In fact, the computation of
Groebner bases generalizes Gaussian elimination in linear
systems.

Proposition 2 ( ) ( ) ( ) ( )= = =V S V I V I V B

Instead of giving the technical definition of what a
Groebner basis is (which can be found in1 and in many
other text books) let us give an example (for simplicity,
we use the term “Groebner bases” to refer to reduced
Groebner bases, which is, technically what we are working
with):

Example 2 Consider the system by

S = {x2 + y2 + z2 – 4, x2 + 2y2 – 5, xz – 1}.

We want to solve S. One way to do so is to compute
a Groebner basis for S. In Figure 1, the output of the cell
number 4 gives a Groebner basis of S. We can see that
the initial system has been triangulized: The last equation
contains only the variable z, whilst the second has an
additional variable, and so on. The variable z is said to
be eliminated with respect to the rest of the variables. When
computing the Groebner basis, the underlying algorithm
(Buchberger’s algorithm) uses the ordering x > y > z
(called lexigraphical ordering) for the computing of
two internal calculations: crossmultiplications and
Euclidean divisions. The program tries to isolate z first,
then z and y, and finally x; y, and z (all variables). It is
clear that different orderings yield different Groebner
bases.

The mathematical power of Groebner bases doesn’t
stop at solving systems of algebraic equations.
The applicability of Groebner bases goes well beyond
this: it gives necessary and sufficient conditions for the
existence of solutions. Let us illustrate this with an
example.
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Example 3 Consider the following 0-1 feasibility problem

1 1 3 1

1 2 2 2

,
,

x x x b
x a x b
+ + =⎧⎪

⎨ + =⎪⎩
(2.4)

with {0, 1}ix ∈  for i = 1, 2, 3. By putting the variables
a2, b1, and b2 to the rightmost of the ordering, we obtain
the set of all a2, b1, and b2 for which the system is feasible.
The notebook in Figure 2 shows the details of the
calculations as well as the conditions on the variables a2,
b1, and b2.

This machinery can be put in more precise wording
as follows:

Theorem 1 Let 0 1, ... nx x −⎡ ⎤⊂ ⎣ ⎦I  be an ideal, and
let B be a reduced Groebber basis of I with respect to the

Figure 1: Jupyter notebook for computing Groebner bases using Python package sympy. More efficient
algorithms exist (e.g.,11,12).

Figure 2: Necessary and sufficient conditions for existence of feasible solutions.

lex order x0 ...  xn–1. Then, for
every 0 ≤ l ≤ n – 1, the set

0 1, ... nx x −⎡ ⎤∩ ⎣ ⎦B  (2.5)

is a Groebner basis of the ideal

0 1, ... nx x −⎡ ⎤∩ ⎣ ⎦I .

As previously mentioned, this
elimination theorem is used to
obtain the complete set of
conditions on the variables xl, ... ,
xn–1, such that the ideal I is not
empty. For instance, if the ideal
represents a system of algebraic
equations and these equations are

(algebraically) dependent on certain parameters, then the
intersection (2.5) gives all necessary and sufficient
conditions for the existence of solutions.

3. The Innate Role of Algebraic Geometry in
Binary Optimization

By now, it should not be surprising to see algebraic
geometry emerges when optimizing polynomial functions.
Here, we expand on this with two examples of how
algebraic geometry solves the binary polynomial
optimization

( )
0 1

0 1( ,..., ) {0,1}
( ) : , ...,m

m
my y

P argmin f y y
−

−∈ (3.1)

The first method we review here was introduced in10

(different from another previous method that is studied in8,
which we discuss in a later section). The second method

we review here is new, and is an
adaptation of the method described
in6 to the binary case.

3.1 A general method for
solving binary optimizations : The
key idea is to consider the ideal

( ){ 0 1, ..., ,mI z f y y −= −

}2 2
0 0 1 1, ..., ,m my y y y− −− −

where we note the appearance of
the variable z. This new variable
covers the range of the function f.
Consequently, if we compute a
Groebner basis with an elimination
ordering in which z appears at the
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rightmost, we obtain a polynomial in z that gives all values
of f. Take, then, the smallest of those values and substitute
in the rest of the basis and solve.

Example 4 Consider the following problem

{0,1) 1 2 3 4

1 2 3 4

2 3 3 ,

2 3.
iyargmin y y y y

y y y y
∈ + + +⎧⎪

⎨
+ + + =⎪⎩

(3.2)

Figure 3 details the solution.

Figure 3: Solving optimization problems with Groebner bases. Although, the cost function is linear
here, the method works for any polynomial function.

3.2 A second general method for solving binary
optimizations : An important construction that comes with
the cost function f is the gradient ideal. This is a valuable
additional information that we will use in the resolution of
the problem (P). Now, because the arguments of the cost
function f are binary, we need to make sense of the
derivation of the function f. This is taken care of by the
introduction of the function

1
2

0
: ( 1),

m

i i i
i

f f y yα
−

=
= + −∑ (3.3)

where αi are real numbers with 1iα > . We can now go
ahead and define the gradient ideal of f as

2
0 1

: , ...,
m

y f f
α −

= ∂ ∂I . (3.4)

The variety ( )V I  gives the set of local minima of
the function f. Its coordinate ring is the residue algebra

0 1 0 1: , ..., , , ...,m mA y y α α− −⎡ ⎤= ⎣ ⎦ I (3.5)

Let us define the linear map

:f

g

m A A

g f

→

→ (3.6)

Because the number of local minima is finite, the
residue algebra A is finite
dimensional. Because of this, the
following is true1 :

The values of f , on the set of
critical points ( )V I , are given
by the eigenvalues of the matrix

fm  .

The eigenvalues of 
iym  and

i
mα  give the coordinates of the
points of ( )V I .

If v is an eigenvector for fm ,
then it is also an eigenvector for

iym  and 
i

mα  for 0 ≤ i ≤ m –
1.

We need to compute a basis
for A. This is done by first

computing a Groebner basis for I  and then extracting the
standard monomials (i.e., the monomials in

0 1 0 1, ..., , , ...,m my y α α− −⎡ ⎤⎣ ⎦  that are not divisible by the

leading term of any element in the Groebner basis). In the
simple example below, we do not need to compute any
Groebner basis, because I  is a Groebner basis with respect
to plex(α , y).

Example 5 We illustrate this on

f  = 2 + 7x4 + 2x3 + 2x4x3 – 2x3x2 - x1 – 4x4x1 -
2x3x1 + x2x1

where {0, 1}ix ∈ . A basis for the residue algebra A is given
by the set of the 16 monomials

{1, x4, x3, x4x3, x2, x4x2, x3x2, x3x2x4, x1, x4x1, x3x1,

x1x3x4, x2x1, x4x1x2, x1x3x2, x1x3x2x4}.
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We obtain the following eigenvalues for fm  :

{ 0, 1, 2, 4, 5, 6, 9, 11, 13}.

This is also the set of values that f takes on ( )V I .
The eigenvector v that corresponds to the eigenvalue 0 is
the column vector

v : = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0)T.

This eigenvector is used to find the coordinates of
ˆ ( )x∈V I  that minimizes f. The coordinates of the global

minimum ( )0 1ˆ ˆ ˆ, ..., mx x x −=  are defined by ˆ
ix im v x v= ,

and this gives x1 = x2 = x3 = 1, x4 = 0, and 1 2 32α α α= =

42, 5α= = .

4. Factoring on Quantum Annealers

This section reviews the use of the Groebner bases
machinery in the factoring problem on current quantum
annealers (introduced in13). We need to deal with three key
constraints: first, the number of available qubits. Second,
the limited dynamic range for the allowed values of the
couplers (i.e., coefficients of the quadratic monomials in
the cost function), and third, the sparsity of the hardware
graph.

4.1 Reduction : In general, reducing a polynomial
function f into a quadratic function necessitates the injection
of extra variables (the minimum reduction is given in terms
of toric ideals14). However, in certain cases, the reduction

to QUBOs can be done without the
additional variables. This is the example
of the Hamiltonian that results from the
long multiplication13. In fact, in addition
to reduction, we can also adjust the
coffiecients to be within the dynamic range
needed, at the same time. Consider the
quadratic polynomial

Hij := QiPj + Si,j + Zi,j – Si+1,j–1 –
2Zi,j+1,

with the binary variables Pj, Qi, Si,j, Si+1,j–

1, Zi,j, Zi,j+1. The goal is to solve Hij
(obtain its zeros) by converting it into a
QUBO. Instead of directly squaring the
function Hij (naive approach) and then
reducing the cubic function result into a
quadratic function by adding extra
variables, we compute a Groebner basis
B of the system

{ } { }{ }2
, 1, 1 , , 1, , , , , ,ij j i i j i j i j i jS H x x x P Q S S Z Z+ − += ∪ − ∈ ,

and look for a positive quadratic polynomial ijH + =

| ( ) 2 tt deg t a tβ∈ ≤∑  in the ideal generated by S. Note that

global minima of ijH +  are the zeros of Hij .

The Groebner basis B is

t1 := QiPj + Si,j + Zi,j – Si+1,j–1 – 2Zi,j+1,

t2 := (–Zi,j+1 + Zi,j) Si+1,j–1 + (Zi,j+1 – 1)Zi,j ,

t3 := (–Zi,j+1 + Zi,j) Si,j + Zi,j+1 – Zi,j+1Zi,j ,

t4 := (Si+1,j–1 + Zi,j+1 – 1) Si,j – Si+1,j–1Zi,j+1,

t5 := (–Si+1,j–1 – 2Zi,j+1 + Zi,j + Si,j)Qi – Si,j – Zi,j +
Si+1,j–1 + 2Zi,j+1,

t6 := (–Si+1,j–1 – 2Zi,j+1 + Zi,j + Si,j) Pj – Si,j – Zi,j +
Si+1,j–1 + 2Zi,j+1,

in addition to 3 more cubic polynomials.

We take ijH + = | ( ) 2 tt deg t a tβ∈ ≤∑ ; and solve for the
at. We can require that the coefficients at are subject to
the dynamic range allowed by the quantum processor (e.g.,
the absolute values of the coefficients of ijH + , with respect
to the variables Pj, Qi, Si,j , Si+1,j–1, Zi,j , and Zi,j+1, be within
[ ]1 , 1ε ε− + ). The ensemble of these constraints translates

The matrix fm  is

fm = 

2 7 2 2 0 0 2 0 1 4 2 0 1 0 0 0
0 9 0 4 0 0 0 2 0 5 0 2 0 1 0 0
0 0 4 9 0 0 2 0 0 0 3 4 0 0 1 0
0 0 0 13 0 0 0 2 0 0 0 7 0 0 0 1
0 0 0 0 2 7 0 2 0 0 0 0 0 4 2 0
0 0 0 0 0 9 0 2 0 0 0 0 0 4 0 2
0 0 0 0 0 0 2 9 0 0 0 0 0 0 2 4
0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 6
0 0 0 0 0 0 0 0 1 3 0 2 1 0 2 0
0 0 0 0 0 0 0 0 0 4 0 2 0 1 0 2
0 0 0 0 0 0 0 0 0 0 1 5 0 0 1 0

− − − −
− − −

− − −
− −

− −
− −

− −
−

−
−

−
0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 2 3 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪−⎪ ⎪

−⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭
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into a simple real optimization problem for the coefficients
at.

4.2 Embedding : The connectivity graph of the
resulting quadratic polynomial ijH +  is the complete graph
K6. Although embedding this into current architectures is
not evident, the situation becomes better with upcoming
architectures (e.g., D-Wave’s next generation quantum
processors15).

5.  Compiling on Quantum Annealers

Compiling the problem (P) in AQC, consists of two
steps: reduction of the problem’s polynomial function into
a quadratic function (covered above) and later embedding
the graph of the quadratic function inside the quantum
annealer’s hardware graph. This process can be fully
automatized using the language of algebraic geometry14.
We review here the key points of this automatization,
through a simple example.

Let us first explain what is meant by embeddings (and
introduce the subtleties that come with). Consider the
following optimization problem that we wish to solve on
the D-Wave 2000Q quantum processor:

0 1

8

* 0( ,..., ) {0,1}
1

( ) : arg min .m
m

i iy y
i

y c y
− ∈

=
∑P (5.1)

Before we start annealing, we need to map the logical
variables yi to the physical qubits of the hardware.
Similarly, the quadratic term ciy0yi needs to be mapped
into a coupling between physical qubits with strength given
by the coefficient ci. Not surprisingly, this mapping can
not always be a simple matching–because of the sparsity
of the hardware graph (Chimera in our case). This is true
for our simple example; the degree of the central node is
8, so a direct matching inside Chimera, where the maximum
degree is 6, is not feasible. Thus, we stretch the definition
of embedding. Instead, we allow nodes to elongate or, as
an algebraic geometer will say, to blow up. In particular,

if we blow up the central node y0 into an edge, say the
edge (x5, x9), we can then redistribute the surrounding nodes
y1, ..., y8, at these two duplicates of y0. In general, one
needs a sequence of blow ups, which turns out to be a
hard problem. What makes the problem even harder is that
not all embeddings are equally valued. It is important to
choose embeddings that have, among others, smaller chains,
as illustrated in Figure 5. Of course, this is in addition to
minimizing the overall number of physical qubits used.

Figure 5: The depicted embedding (for the problem (P)*) has two long
chains that don’t persist through the adiabatic evolution (in D-Wave
2000Q processor). In this case, the quantum processor fails to return an
answer.

5.1  Embeddings as fiber-bundles : One way to think
about embedding the logical graph Y into the hardware
graph X is in terms of fiber-bundles. This equational
formulation makes the connection with algebraic geometry.
The general form of such fiber-bundles is

( )i ij j
ij

x yπ α=∑ (5.2)

with 1 2 0,, ( 1) 0ij i ij ij ij ij
ij
α β α α α α== − =∑ ,

where the binary number iβ  is 1 if the physical qubits xi
is used and 0 otherwise. We write domain(π ) = Vertices(X)
and support(π ) = Vertices( X β ) with subgraphX Xβ ⊂ .

The fiber of the map π  at ( )jy Y∈Vertices  is given by

{ }1( ) ( ) ( ) | 1j j i ijy x Xπ γ φ α− = = ∈ =Vertices  (5.3)

The conditions on the parameters

ijα  guarantee that fibers don’t intersect
(i.e., π is well defined map). In
addition to these conditions, two more
conditions need to be satisfied: (i)
Pullback Condition: the logical graph
Y embeds entirely inside X (ii)
Connected Fiber Condition: each fiber
is a connected subgraph (of X). We will

Figure 4: (Left) The logical graph of the objective function in (P*), can not be embedded inside
Chimera graph. (Center) We blow up the central node into edges (x5, x9) and redistribute the
surrounding nodes. (Right) Embedding inside an actual D-Wave 2000Q quantum annealer; in red,
the chain of qubits representing the logical qubit y0. The missing qubits are faulty.
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not go into the details of these conditions, which can be
found in14. We illustrate this in a simple example.

Example 6 Consider the two graphs in Figure 6. In
this case, equations (5.2) are given by

1,1 1,2 1,1 1,3 1,2 1,3, , ,α α α α α α (5.4)

2,1 2,2 2,1 2,3 2,2 2,3, , ,α α α α α α (5.5)

3,1 3,2 3,1 3,3 3,2 3,3, , ,α α α α α α (5.6)

4,1 4,2 4,1 4,3 4,2 4,3, , ,α α α α α α (5.7)

5,1 5,2 5,1 5,3 5,2 5,3, , ,α α α α α α (5.8)

and

1,1 1,2 1,3 1,α α α β+ + − 2,1 2,2 2,3 2 ,α α α β+ + −

3,1 3,2 3,3 3,α α α β+ + − 4,1 4,2 4,3 4 ,α α α β+ + −

5,1 5,2 5,3 5.α α α β+ + −

Figure 6: The set of all fiber bundles : X Yπ →  defines an algebraic
variety. This variety is given by the Groebner basis (5.9).

The Pullback Condition reads

4,1 5,2 3,1 4,2 1,1 2,2 3,2 4,1 1,2 2,11 α α α α α α α α α α− + + + + +

1,2 4,1 2,2 3,1 1,1 4,2 2,1 3,2 4,2 5,1,α α α α α α α α α α+ + + + +

3,3 4,1 1,3 2,1 2,3 3,1 4,1 5,3 1,3 4,11 α α α α α α α α α α− + + + + +

1,1 2,3 4,3 5,1 2,1 3,3 3,1 4,3 1,1 4,3,α α α α α α α α α α+ + + + +

3,3 4,2 1,2 2,3 1,2 4,3 1,3 2,2 1,3 4,21 α α α α α α α α α α− + + + + +

2,3 3,2 2,2 3,3 4,2 5,3 3,2 4,3 4,3 5,2 ,α α α α α α α α α α+ + + + +

Finally, the Connected Fiber Condition is given by

1,1 2,1 5,1 1,1 3,1 5,1 1,2 2,2 5,2, , ,α α α α α α α α α− − −

1,2 3,2 5,2 1,3 2,3 5,3 1,3 3,3 5,3, ,α α α α α α α α α− − −

2,1 3,1 5,1 2,1 4,1 5,1 2,2 3,2 5,2, , ,α α α α α α α α α− − −

2,2 4,2 5,2 2,3 3,3 5,3 2,3 4,3 5,3, , ,α α α α α α α α α− − −

2,1 5,1 2,2 5,2 2,3 5,3.α α α α α α

We can then use the elimination theorem to obtain
all embeddings of Y inside X (by putting the variables iβ
to the right most of the elimination order). A part of the
Groebner basis is given by

{ 2 2
1 2 3 4 5 51, 1, 1, 1, , ,ij ijβ β β β β β α α= − − − − − −B (5.9)

1,2 1,3 1,2 3,2 1,3 3,3 2,2 2,3 2,2 4,2, , , , ,α α α α α α α α α α

2,2 5,2 2,3 4,3 2,3 5,3 3,2 3,3 4,2 4,3, , , , ,α α α α α α α α α α

4,2 5,3 4,3 5,2 5,2 5,3 4,2 5,2, , ,α α α α α α α α

5,2 4,2 5 5,2 4,3 1,2 5,3 5,3,α α β α α α α α− − −

2,2 5,3 3,2 5,3 1,2 5 2,2 5α α α α α β α β− − + +

}3,2 5 3,3 5 5,2 5,3 5α β α β α α β+ + + + − .

In particular, the intersection [ ]β∩ =B

( )2
1 2 3 4 5 51, 1, 1, 1,β β β β β β− − − − −  gives the two Y

minors (i.e., subgraphs X β ) inside X. The remainder of
B gives the explicit expressions of the corresponding
mappings.

5.2 Symmetry Reduction : Many of the embeddings
aquired using the above method, are redundant. We can
eliminate this redundancy in a mathematically elegant way
using the theory of invariants [Olv99] (on top of the
algebraic geometrical formulation). First, we fold the
hardware graph along its symmetries and then proceed as
before. This amounts to re-expressing the quadratic form
of the hardware graph in terms of the invariants of the
symmetry.

Example 7 Continuing with the same example: The
quadratic form of X is :

QX(x) = x1x2 + x2x3 + x3x4 + x1x4 + x4x5 (5.10)

Exchanging the two nodes x1 and x3 is a symmetry
for X; and the quantities K = x1 + x3, x2, x4, and x5 are
invariants of this symmetry. In terms of these invariants,
the quadratic function QX(x), takes the simplied form:

QX(x, K) = Kx2 + Kx4 + x4x5 (5.11)

which shows (as expected) that graph X can be folded into
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a chain (given by the new nodes [x2, K, x4, x5]). The
surjective homomorphism : X Yπ →  now takes the form

01 1 02 2 03 3.K y y yα α α= + + (5.12)

1 1 1 2 2 3 3i i ix y y yα α α= + +  for i = 2, 4, 5. (5.13)

The table below compares the computations of the
surjections π  with and without the use of invariants:

original invt
coords coords

Time for computing a Groebner
basis (in secs) 0.122 0.039

Number of defining equations 58 30

Maximum degree in the defining
eqns 3 2

Number of variables in the
defining eqns 20 12

Number of solutions 48 24

In particular, the number of solutions is down to 24,
that is, four (non symmetric) minors times the six
symmetries of the logical graph Y .

6. Quantum Computing for Algebraic
Geometry

Here we give an example that goes in the opposite
direction of what we have covered so far. We show how
quantum computers can be used to compute algebraic
geometrical structures that are exponentially hard to
compute classically. Our attention is directed to a prominent
type of polynomial ideals; the so-called toric ideals and
their Groebner bases. In the context of the theory of integer
optimization, this gives a novel quantum algorithm for
solving IP problems (a quantum version of Conti and
Traverso algorithm7, that is used in8). As a matter of fact,
the procedure which we are about to describe can be used
to construct the full Groebner fan5,1 of a given toric ideal.
We leave the technical details for a future work. A related
notion is the so-called Graver basis which extends toric
Groebner bases in the context of convex optimization. A
hybrid classical-quantum algorithm for computing Graver
bases is given in17.

Toric ideals are ideals generated by differences of
monomials. Because of this, their Groebner bases enjoy a
clear structure given by kernels of integer matrices.
Specifically, let A = (a1,...., an) be any integer m × n-matrix
(A is called configuration matrix). Each column ai = (a1i,...,

ani)
T is identified with a Laurent monomial

1
1 ...ii niaa a

my y y= . In this case, the toric ideal JA associated
with the configuration A is the kernel of the algebra
homomorphism

[ ] [ ]x y→ (6.1)

.ia
ix y→ (6.2)

From this it follows that the toric ideal JA is generated
by the binomials u ux x+ −− ; where the vector

n nu u u + +
+ −= − ∈ ⊕  runs over all integer vectors in

KerZA, the kernel of the matrix A. It is not hard to see
that the elimination theorem that we have used repeatedly
can also be used here to compute a Groebner basis for the
toric ideal JA.

Now we explain how AQC (or any quantum optimizer
such as Quantum Approximate Optimization Algorithm,
QAOA18) can be used to compute Groebner bases for the
toric ideal JA. The example we choose is taken from1-
Chapter 8. The matrix A is given by

4 5 1 0
2 3 0 1

A
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

(6.3)

The kernel is easily obtained (with polynomial
complexity). It is the two dimensional –vector space
spanned with ((1, 0, – 4, – 2), (0, 1, – 5, – 3)) : We
define u = (a, b, – 5b – 4a, – 3b, – 2a), which is a linear
combination (over ) of the two vectors. As in1, we
consider the lexographical ordering plex(w4, w3, w2, w1)
represented by the matrix order

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

M

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

(6.4)

The cost function is given by the square of the
Euclidean norm of the vector Mut. Figure 7 details the
solution of this optimization problem on D-Wave 2000Q
quantum processor. Each solution has twelve entries, and
is of the form [a0,+, a0,–, ..., b2,+, b2,–], corresponding to
the binary decomposition of the integers

( )0,1,2 , , 2i
i i ia a a= + −= ∑ −  and ( )0,1,2 , , 2i

i i ib b b= + −= ∑ − .
Qubits marked -1 are not used, so they should be
considered equal to zero. The collection of all these
solutions translates into the sought Groebner basis
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2 2 3
2 3 1
4 3
1 4 2 3

1 4 3 2
3 2

2 4 3 1
4 2
3 4 1

,

,

,

,

.

w w w

w w w w
w w w w

w w w w

w w w

⎧ −⎪
⎪ −⎪⎪= −⎨
⎪

−⎪
⎪

−⎪⎩

B
(6.5)

7. Groebner Bases in the Fundamental
Theory of AQC

The role of the so-called anti-crossings4, 19 in AQC
is well understood. This is expressed as the total adiabatic
evolution time being inversely proportional to the square
of the minimum energy difference between the two lowest
energies of the given Hamiltonian. This minimum is
attained at anti-crossings. In this last section, we connect
anti-crossings to the theory of Groebner bases (through a

Figure 7: Computation of toric Groebner bases on the D-Wave 2000Q quantum processor.

quick detour to Morse theory20, 21).

Consider the time dependant Hamiltonian:

H(s) = (1 – s)Hinitial + sHfinal, (7.1)

To the Hamiltonian (7.1), we assign the function f
given by the characteristics polynomial:

( )( , ) det ( ) .f s H s Iλ λ= − (7.2)

where I is the identity n × n –  matrix. The important role
that the function f plays in AQC is described in22, 23. In
particular, anti-crossings are now mapped into saddle points
of the function f. This is the starting point of the connection
with Morse theory, which is explored in details in22, 23.
Here we explain how anti-crossings can be described using
Groebner bases. The key fact is that the function f is a
polynomial function of s and λ , and so is any partial
derivative of f. Recall that a critical point p of f is a point
at which the differential map df is the zero map–that is,
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the gradient of f vanishes at p. A critical point is said to
be non degenerate (e.g., a saddle point) if the determinant
of the Hessian of f at p is not zero. Define the ideal I
generated by the two polynomials s f∂  and fλ∂ . It is
clear that the variety of I gives the set of all critical points
of f. To capture the non degeneracy, we need to saturate
the ideal I with the polynomial det(Hessian(f)). This
saturation is the ideal given by all polynomials in I that
vanish for all the zeros of I that are not zeros of
det(Hessian(f)). In other words, a point p is a non
degenerate critical point of the function f if and only if the
remainder NormalFormB(det(Hessian(f))) is not zero at p,
where B is a Groebner basis for the ideal I.

8. Summary and Discussion

As we mentioned in the Introduction, we are travellers
in a journey that our ancients started. Evidence of “practical
mathematics” during 2200 BCE in the Indus Valley has
been unearthed that indicates proficiency in geometry.
Similarly, in Egypt (around 2000 BCE) and Babylon (1900
BCE), there is good evidence (through the Rhind Papyrus
and clay tablets, respectively) of capabilities in geometry
and algebra. After the fall of the Indus Valley Civilization
(around 1900 BCE), the Vedic period was especially fertile
for mathematics, and around 600 BCE, there is evidence
that magnetism (discovered near Varanasi) was already used
for practical purposes in medicine (like pulling arrows out
of warriors injured in battle), as written in Sushruta
Brahmana. Magnetism was also independently discovered
by pre-Socrates Greeks, as evidenced by the writings of
Thales (624-548 BCE), who, along with Pythagoras (570-
495 BCE), was also quite competent in geometry. Indeed,
well before Alexander (The Great), and the high points of
Hellenistic Greek period, there is evidence that the Greeks
were already doing some type of algebraic geometry.

Algebra, which is derived from the Arabic word
meaning completion or “reunion of broken parts”, reached
a new high watermark during the golden age of Islamic
mathematics around 10th Century AD. For example, Omar
Khayyam (of the Rubaiyat fame) solved cubic equations.
The next significant leap in algebraic geometry, a
Renaissance, in the 16th and 17th century, is
quintessentially European: Cardano, Fontana, Pascal,
Descartes, Fermat. The 19th and 20th Century welcomed
the dazzling contributions of Laguerre, Cayley, Reimann,
Hilbert, Macaulay, and the Italian school led by Castelnuov,
del Pezzo, Enriques, Fano, and Severio. Modern algebraic
geometry has been indelibly altered by van der Waerden,
Zariski, Weil, and in 1950s and 1960s, by Serre and

Grothendieck. Computational algebraic geometry begins
with the Buchberger in 1965 who introduced Groebner
bases (the first conference on computational algebraic
geometry was in 1979).

Magnetism simply could not be explained by classical
physics, and had to wait for quantum mechanics. The
workhorse to study it mathematically is the Ising model,
conceived in 1925. Quantum computing was first
introduced by Feynman in 198124. The study of Ising
models that formed a basis of physical realization of a
quantum annealer (like D-Wave devices) can be traced to
the 1989 paper by Ray, Chakrabarti and Chakrabarti25.
Building on various adiabatic theorems of the early
quantum mechanics and complexity theory, adiabatic
quantum computing was proposed by Farhi et al in 20012.

Which brings us to current times. The use of
computational algebraic geometry (along with Morse
homology, Cerf theory and Gauss-Bonnet theorem from
differential geometry) in the study of adiabatic quantum
computing, and numerically testing our ideas on D-Wave
quantum processors, which is a physical realization of an
Ising model, is conceived by us, the authors, of this
expository article. Let us close with the Roman poet Ovid
(43 BC-17 AD): “Let others praise ancient times; I am
glad I was born in these.”
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