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Recently, Heim, Rφnnow, Isakov and Troyer [Science 348 (2015) 215] have reported that Monte
Carlo simulations for the Ising spin glass model on the square lattice in the physically relevant
continuous-imaginary-time limit do not show superiority of quantum annealing (QA) using transverse
field against classical annealing (CA). Although the QA schedule that they had used has been
using conventionally, however the QA schedule mathematically has no guarantee that the used
schedule is the best QA schedule for performance of optimization. We propose a new QA schedule
for studying transverse-field-based quantum versus classical annealing of the Ising model. The
present QA schedule utilizes a smallest effective transverse field derived in this article. This QA
schedule is made for the comparison between the system with no transverse field and the system
with the smallest effective transverse field. As a case study, we study QA of the Ising spin glass
model on the square lattice at low but finite temperature. A Monte Carlo algorithm using the
physically relevant continuous-imaginary-time limit is performed. As the simulation results, we show
superiority of QA against CA when the annealing time is sufficiently spent.
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Introduction

The quantum annealing (QA) is an optimization
method utilizing quantum effect1,2,3,4,5,6. By using
QA, the solutions of given optimization problems

are approximately or exactly obtained. QA is also related
to a quantum computation by adiabatic evolution7,8.

QA is proposed as an alternative of the classical
annealing (CA)9. In CA, the temperature is operated from
high to low in order to utilize thermal fluctuations. On the
other hand, in QA, external fields (and/or exchange
interactions) generating quantum effect are operated from
large to zero in order to utilize quantum fluctuations. These
annealings help to make the systems escape from local
minima of the free energy, and the systems reach low-
energy states effectively.

The understandings of QA are recently becoming

significant in relation to the D-Wave chip10. This chip is
designed to perform QA for solving optimization problems.
The occurrence of quantum properties for this chip is
shown10.

We simulate QA of real-physical systems in this
article, and we do not simulate QA as a classical
optimization method in this article. Recently, it is reported
in11 that Monte Carlo simulations for the Ising spin glass
model on the square lattice in the physically relevant
continuous-imaginary-time limit do not show superiority of
QA using transverse field against CA. In order to study
physically relevant systems, we use a continuous-imaginary-
time quantum Monte Carlo algorithm in this article. In
addition, we investigate the Ising spin glass model on the
square lattice.

Although the QA schedule used in11 has been using
conventionally, however the QA schedule mathematically
has no guarantee that the used schedule is the best QA
schedule for performance of optimization. We propose a
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new QA schedule for studying transverse-field-based
quantum versus classical annealing of the Ising model. This
QA schedule utilizes a smallest effective transverse field
derived in this article. We derive this field based on a
discussion of percolation of spin correlation per spin along
the continuous-imaginary-time direction. The present QA
schedule is made for the comparison between the system
with no transverse field and the system with the smallest
effective transverse field. By this comparison, the
superiority of QA (or CA) can be made clear.

We apply a quantum Monte Carlo algorithm14

proposed by Nakamura and Ito. This algorithm uses the
physically relevant continuous-imaginary-time limit. This
algorithm is a Glauber-dynamics-like algorithm (a heat-
bath-like algorithm) which performs single-spin flips in the
real space and cluster flips in the imaginary-time space.
The Glauber dynamics is suited to the study of the
dynamical features of physical systems12,13. By applying
this algorithm, observing a true relaxation of the original
system is expected14. The mathematical form of this
algorithm is directly related to the derivation of a smallest
effective transverse field derived in this article, thus we
use this algorithm in this article.

We compare three annealings: the present one, a
conventional quantum one (used for a quantum computation
by adiabatic evolution) and a classical one. The simulation
results for the annealings are shown in this article.

This article is organized as follows. The quantum
annealing and the spin glass model are explained in §2.
The derivation of a quantum Monte Carlo algorithm by
Nakamura and Ito14 is described in §3. The way of applying
this algorithm is written in §4. The differences between
this algorithm and the related algorithms15,16 are mentioned
in §4. Quantities that we treat in this article are described
in §5. A smallest effective transverse field is derived in
§6. A new QA schedule is proposed in §6. Simulation
results are shown in §7. Concluding remarks are in §8.

The Quantum Annealing and the Spin Glass
Model

In terms of theoretical physics, the quantum annealing
can be to investigate a time dependent Hamiltonian H (t)
which has quantum effect terms. Usually, the Hamiltonian
H (t) can be written as

( ) ( ) ( ) ,P Qt J t tγ= +H H H (1)

where t is the time from t = 0 to t = TI . HP is the problem
Hamiltonian that an optimization problem is written. HQ

is a quantum effect Hamiltonian for generating quantum
effect. When TI is a small number, this annealing
corresponds to a fast annealing, and, when TI is a large
number, this annealing corresponds to a slow annealing.
J(t) is an increasing function for t, or J(t) is a constant.
J(t) increases from 0 to 1 for example. ( )tγ  is a decreasing
function for t. ( )tγ  decreases from a large value to zero
for example, or ( )tγ  decreases from 1 to 0 for example.
A method using a pulse of the transverse field is also
proposed16.

When ( )tγ  gives zero from t = 0 to t = TI while the
value of J(t) (or the temperature) changes, this annealing
is a classical annealing. When there is a time that ( )tγ
gives non-zero, this annealing is a quantum annealing.

The problem Hamiltonian HP is written as the form
of the Ising spin glass model called the Edwards-Anderson
model. The Hamiltonian HP is given by17,18,19,20

,P ij i j
ij

S Sτ
< >

= −∑H (2)

where < ij > denotes nearest-neighbor pairs, Si is a state
of a spin at site i, Si = ± 1, and this spin is called the
Ising spin. The value of ijτ  is given by the problem that
is asked to solve. In the spin glass model, the probability
of giving the value of ijτ  is

( ) , 1 ,1
1 1
2 2ij ijijP τ ττ δ δ−= + (3)

for example. Here, δ  is the Kronecker delta. We use the
value of ijτ  obtained by using Eq. (3) in this article. The
Ising spin glass model using P( ijτ ) is called the ± J Ising
spin glass model. We investigate the ± J Ising spin glass
model on the square lattice with periodic boundary
conditions in this article.

The quantum effect Hamiltonian HQ, which is
investigated in this article, is given by1,3,4,5

1
,

N
x

Q i
i

σ
=

= −∑H (4)

where k
iσ  is the k component of the Pauli matrix at site i.

N is the number of sites (spins) in the whole system. The
Pauli matrices are

0 1 0 1 0
, and .

1 0 0 0 1
x y zi

i
σ σ σ

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

(5)
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When the measurement axis is chosen to be z, the
external field by xσ  is called the transverse field. An Ising
spin under the transverse field corresponds to a quantum
bit in this study.

By using Eqs.(1), (2) and (4), the Hamiltonian H (t)
is also written as

1
( ) ( ) ( ) .

N
z z x

ij i j i
ij i

t J t tτ σ σ γ σ
< > =

= − −∑ ∑H (6)

We study this Hamiltonian H (t).

The derivation of a continuous-imaginary-
time quantum Monte Carlo algorithm

The derivation of a quantum Monte Carlo algorithm
by Nakamura and Ito14 is described in this section, since
the mathematical form of this algorithm is directly related
to the derivation of a smallest effective transverse field
derived in this article. The way of applying this algorithm
is described in §4.

The Glauber dynamics is suited to the study of the
dynamical features of physical systems12,13. By applying
the Glauber dynamics, discussions for dynamical features
as a physical system are possible12,13. The Glauber
dynamics is a heat-bath algorithm for the Ising model. We
use a Glauber-dynamics-like algorithm (a heat-bath-like
algorithm) which performs single-spin flips in the real space
and cluster flips in the imaginary-time space. For the real-
space direction, this algorithm performs single-spin flips
like as the Glauber dynamics does. For the imaginary-time
direction, the continuous-imaginary-time limit is applied.

We use the Suzuki-Trotter decomposition given by21

( )( )

0
lim ,A B C CA B tt t t
t

e e e e
β

β− + + − Δ− Δ − Δ Δ
Δ →

=H H H HH H (7)

where ,Mt βΔ ≡  M is called the Trotter number, and t  is

called the imaginary time. β  is the inverse temperature,
β  = 1/(kBTE), TE is the temperature, and kB is the
Boltzmann constant. The physically relevant continuous-
imaginary-time limit mentioned in11 corresponds to the limit
of 0tΔ →  in this article. By this decomposition, the d-
dimensional quantum system is treated as the (d + 1)-
dimensional classical system. A continuous-imaginary-time
quantum Monte Carlo algorithm is used in this study. This
means that the system for 0tΔ →  is directly investigated.
This study is not affected by the error of the Suzuki-Trotter
decomposition. There is a relation21 :

( )( ) ( ) ( )1 ,
2

xz t z t z z t
x y x ye e eβγ σ βγ βγσ σ σ σ −= + (8)

where , 1z z
x yσ σ = ± . Thus, the partition function Z(t) is

written as21

{ }0
( ) lim exp ( )

z
ik

z z
ij ik jkt k ij

Z t J t t
ρ ρσ

τ σ σ
Δ →

∈ ∈

⎧⎪= Δ⎨
⎪⎩

∑ ∑∑

( ) ( )exp ( ) exp ( )
log

2

z z
ik il

kl i

t t t t

ρ ρ

γ σ σ γ

∈ ∈

⎫Δ + − Δ ⎪+ ⎬
⎪⎭

∑∑ , (9)

where ρ  is the set of the coordinates of the weights for
the decomposed partition function in the d + 1-dimensional
classical system. The coordinates of ρ  is somewhat
complicated21, but there is no need to understand the
coordinates, because of taking the continuous-imaginary-
time limit. By performing 0tΔ → , the imaginary time
becomes a continuous space. In Eq. (9), the term for

z z
ik jkσ σ  is a term for the interaction of real-space direction,

and the term for z z
ik ilσ σ  is a term for the interaction of

imaginary-time direction. The imaginary-time direction has
periodic boundary conditions. The size of the imaginary-
time direction is the same with the inverse temperature β .
Eq. (9) is also written for 0tΔ →  as

{ }0
( ) lim exp ( )

z
ik

z z
ij ik jkt k ij

Z t J t t
ρ ρσ

τ σ σ
Δ →

∈ ∈

⎡
⎢= Δ
⎢
⎣

∑ ∑∑

( ) 1
log ( ) .

2

z z
ik il

kl i
t t

ρ ρ

σ σ
γ

∈ ∈

⎤− ⎥+ Δ
⎥
⎦

∑∑ (10)

In order to derive this algorithm, we derive weights
for graph representation. The framework of deriving weights
for graph representation is described in22. We define the
weight of two spins along imaginary-time direction as

( ) ( ), , ,z z z z
ik il ik ilw wσ σ σ σ  is given by

( ) ( )1, exp log ( ) .
2

z z
z z ik il
ik ilw t t

σ σ
σ σ γ

⎡ ⎤−
⎢ ⎥= Δ
⎢ ⎥⎣ ⎦

(11)

We define the weight for z z
ik ilσ σ  = 1 as wpara. By

using Eq. (11), we obtain
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wpara = 1. (12)

We define the weight for z z
ik ilσ σ  = – 1 as wanti. By

using Eq. (11), we obtain

anti ( ) .w t tγ= Δ (13)

We define the weight of graph for connecting two
spins as w(gconn). We define the weight of graph for cutting
two spins as w(gcut). We are able to write

wpara = w(gconn) + w(gcut) (14)

and

wanti = w(gcut). (15)

By using Eqs. (12) - (15), we obtain

( )conn 1 ( ) ,w g t tγ= − Δ (16)

and

( )cut ( ) .w g t tγ= Δ (17)

We define the probability of cutting two spins for
z z
ik ilσ σ  = 1 as Ppara(gcut). We define the probability of

cutting two spins for z z
ik ilσ σ  = – 1 as Panti(gcut). We are

able to write

cut
para cut

conn cut

( )
( ) ( ) ,

( ) ( )
w g

P g t t
w g w g

γ= = Δ
+ (18)

and

cut
anti cut

cut

( )
( ) 1.

( )
w g

P g
w g

= = (19)

We calculate the probability of giving the number of
cuts per spin for Ppara(gcut) of Eq. (18) in the continuous-
imaginary-time limit. We define nadd as the number of cuts
per spin for parallel spins σ σ ′  = 1 along the imaginary-
time direction. By using Eq. (18), the probability P(nadd)
of giving nadd is obtained as

( )addP n

( ) ( )kink add addkink
para para0

add

lim 1
n n n

t
t

n
P Pt

n

ββ
− −

Δ
Δ →

⎛ ⎞−⎜ ⎟= −Δ⎜ ⎟⎜ ⎟
⎝ ⎠

( ) ( )add

add

1 ( ) exp ( ) ,
!

nt t
n

γ β γ β= − (20)

where 
!

!( )!
x x
y y x y

⎛ ⎞
≡⎜ ⎟ −⎝ ⎠

, and nkink is the number of kinks

per spin. The kink means the position of antiparallel spins
σ σ ′  = – 1 along the imaginary-time direction. The position

addt  of the cut for parallel spins σ σ ′ = 1 along the
imaginary-time direction is obtained by

add ,t Rβ= (21)

where R is a pseudorandom number for 0 ≤ R < 1. By
using Eq. (19), cuts are added for antiparallel spins σ σ ′
= – 1 along the imaginary-time direction with probability
one. Thus the number of cuts per spin for antiparallel spins
along the imaginary-time direction is nkink. Therefore, the
number of all cuts per spin along the imaginary-time
direction, ncut, is given by

ncut = nadd + nkink . (22)

This algorithm performs single-spin flips in the real
space. The transition probability P( E E ′→ ) for the energy
transition E E ′→  is given by

( ) .
E

E E
eP E E

e e

β

β β

′−

′− −
′→ =

+
(23)

Cuts are added along the imaginary-time direction,
and the spin correlations along the imaginary-time direction
are cut at the positions of the cuts. Therefore, P( E E ′→ )
is only calculated for real spaces. When there is no cut,
this algorithm becomes the Glauber dynamics.

The way of applying this Monte Carlo
algorithm

We describe the way of applying this algorithm. The
derivation of this algorithm is in §3. When the transverse
field is not imposed, this algorithm becomes the Glauber
dynamics.

One Monte Carlo step (sweep) is as follows:

1. The number of cuts for parallel spins along the
imaginary-time direction, nadd, is calculated by
using Eq. (20) for each spin, and the positions of
cuts for parallel spins along the imaginary-time
direction, addt , are calculated nadd times by using
Eq. (21) for each spin. Moreover, cuts are placed
on all kinks with probability one (Eq. (19)).
Clusters are detected by all the cuts. The number
of clusters, NC, is counted up. When there is no
cut, NC gives N (the number of spins).
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2. One of the detected clusters is randomly picked
up, and the cluster is flipped with the probability
of Eq. (23). The trials of flipping clusters are
performed NC times.

3. All the cuts are deleted.

4. Quantities are sampled if needing to sample the
quantities.

One Monte Carlo step is a unit of time used in this
study. This time is called the Monte Carlo time. We
investigate physical systems under this time evolution.

Fig. 1 shows a sketch of one Monte Carlo step. Full
lines correspond to worldline segments with spin up, and
broken lines correspond to worldline segments with spin
down. The horizontal axis indicates the real space, and the
longitudinal axis indicates the imaginary time. A discrete
space is assumed for the real-space direction, and a
continuous space is assumed for the imaginary-time
direction. The imaginary-time direction has periodic
boundary conditions. (a) Spin states are shown. (b) Cuts
are added. Cuts for kinks are represented as bars, and cuts
for parallel spins along the imaginary-time direction are
represented as crosses. Cuts for kinks are added with the
probability one according to Eq. (19). Cuts for parallel
spins along the imaginary-time direction are added

according to Eqs.(20) and (21). (c) Cluster flips are
performed. One of clusters is randomly picked up, and the
cluster is flipped with the probability of Eq. (23). Cluster
flips are tried for the number of clusters. (d) Cuts are
deleted, and quantities are sampled.

Fig. 2 shows a sketch of one cluster flip. The
horizontal axis indicates the real space, and the longitudinal
axis indicates the imaginary time. (a) Spin states are
shown before a cluster C1 is flipped. (b) Spin states are
shown after the cluster C1 was flipped. If the
transition probability P( E E ′→ ) of Fig. 2 is calculated,
P( E E ′→ ) is obtained as P( E E ′→ ) =

( ) ( ){ }1 3 12 1 2 3 231/ 1 exp 2 ( ) 2 ( ) 2 .J t t t J t t t tτ τ⎡ ⎤+ − − + − +⎣ ⎦

One simulation is as follows:

1. A problem (a set of ijτ ) is prepared.

2. Initial states of spins at t = 0 are made by using
some Monte Carlo steps, and quantities are
sampled for t = 0.

3. One Monte Carlo step is performed. t ← t + 1 is
executed. Quantities are sampled for t.

4. When t = TI , the simulation is closed.

Fig. 2: A sketch of one cluster flip. The horizontal axis indicates the
real space, and the longitudinal axis indicates the imaginary time. (a)
Spin states are shown before a cluster C1 is flipped. (b) Spin states are
shown after the cluster C1 was flipped.

By repeating the above procedures, many simulations
are performed, and the average values of quantities are
calculated.

We describe the differences between related
algorithms. The algorithm by Rieger and Kawashima is that
for each site one generates new cuts in addition to the old
ones from the already existing segments via a Poisson
process with decay time 1 γ  along the imaginary-time
direction15. This algorithm directly detects the correlation
length along the imaginary-time direction. On the other

Fig. 1: A sketch of one Monte Carlo step. Full lines correspond to
worldline segments with spin up, and broken lines correspond to
worldline segments with spin down. The horizontal axis indicates the
real space, and the longitudinal axis indicates the imaginary time. (a)
Spin states are shown. (b) Cuts are added. Cuts for kinks are represented
as bars, and cuts for parallel spins along the imaginary-time direction
are represented as crosses. (c) Cluster flips are performed. (d) Cuts are
deleted, and quantities are sampled.
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hand, this algorithm directly treats the number of cuts for
detecting the correlation lengths along the imaginary-time
direction. This algorithm generates the number of cuts for
each site, and this algorithm adds the cuts randomly. The
algorithm by Morita, Suzuki and Nakamura is that the
initial cluster state is made by giving the position of cuts
by the Poisson process with the mean value βγ 16. If the
number of generated domain walls is odd, one of the
domain walls is removed to obey the periodic boundary
conditions along the imaginary-time direction16. This
algorithm does not judge whether the number of generated
domain walls is odd or even. If this process for removing
one of the domain walls was combined with this algorithm,
this combined algorithm gives incorrect results. Therefore,
this algorithm and the algorithm by Morita, Suzuki and
Nakamura should be considered to be separated.

The simulation results by these algorithms can be the
same for all situations. The orders of calculation costs for
this algorithm and the related algorithms can also be the
same for the system sizes, thus we do not compare the
algorithms in detail in this article. The aim of this article
is to propose a new quantum annealing schedule and to
investigate the efficiency of the schedule. The mathematical
form of this Monte Carlo algorithm is directly related to
the derivation of a smallest effective transverse field, and
the schedule that we propose in this article utilizes the field.
We derive the field in §6.

Quantities

We describe the quantities that we investigate in this
article.

By using Eq. (10), the expectation value T J
E⎡ ⎤

⎣ ⎦
of the energy E of the Hamiltonian H (t) (Eq. (6)) is written
as

[ ]logT JJ
E Z

β
∂⎡ ⎤ = −⎣ ⎦ ∂

( )

2
2

0

11 ( ) 1lim
2z

ik

z
z ik il

ij ik jkt k ij kl i

J t
Z M ρ ρ ρ ρσ

σ σ
τ σ σ

βΔ → ∈ ∈ ∈ ∈

⎡ ⎛ ⎞−⎢ ⎜ ⎟= − −⎢ ⎜ ⎟⎢ ⎝ ⎠⎣

∑ ∑ ∑ ∑∑

( )
2

2 1
exp ( ) log ( ) ,

2

z
z ik il

ij ik jk
k ij kl i J

J t t t t
ρ ρ ρ ρ

σ σ
τ σ σ γ

∈ ∈ ∈ ∈

⎤⎡ ⎤− ⎥⎢ ⎥× Δ + Δ
⎥⎢ ⎥

⎣ ⎦⎦
∑ ∑ ∑∑

(24)

where T  is the thermal average, and [ ]J is the average
for ijτ . [ ]J is the average for the problems that are asked

to solve, and, if the word for the spin glass model is used,
[ ]J is the random configuration average. Therefore, in order
to calculate the expectation value of the energy by the
Monte Carlo simulation,

kink
10

( ) 1( ) ( ) ( )
N

z z
ij i j

ij i

J tE dt t t n i
β

τ σ σ
β β =

= − −∑ ∑∫ (25)

is sampled, where nkink(i) is the number of kinks at site i.
By the way, the solution of a given optimization problem
at site i can be obtained as

0

0

( )
.

( )

z
result i
i z

i

dt t
S

dt t

β

β

σ

σ

∫
=
∫

(26)

The aim of the quantum annealing is to solve
optimization problems. Therefore, by using Eqs.(2) and
(26), investigating an energy EP given by

0 0

0 0

( ) ( )

( ) ( )

z z
i i

P ij z z
ij i i

dt t dt t
E

dt t dt t

β β

β β

σ σ
τ

σ σ

∫ ∫
= −

∫ ∫
∑ (27)

can be suited for this study, since, if a lot of kinks remains
in the system after annealing, there is a possibility that E
of Eq. (25) gives an unexpected low value. In addition,
there is a possibility that this unexpected low value gives
a false impression for success of the quantum annealing.
Thus we investigate the energy EP instead of the energy E
in this article.

We define the exact ground-state energy of Eq. (2)
as EG, where the exact ground-state is the exact solution
of the given problem. EG depends on ijτ . The residual
energy Eres is given by

res .P GT J
E E E⎡ ⎤= −⎣ ⎦ (28)

We investigate the residual energy Eres in this article.

The accuracy Pexact is given by

exact , .
P GE E T J

P δ⎡ ⎤= ⎢ ⎥⎣ ⎦ (29)

We investigate the accuracy Pexact in this article.

A New Quantum Annealing Schedule

The mathematical form of this Monte Carlo algorithm
derived in §3 is directly related to the derivation of a
smallest effective transverse field, and the quantum
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annealing schedule that we propose in this article utilizes
the field. Firstly, we derive the field based on a discussion
of percolation of spin correlation per spin along the
continuous-imaginary-time direction.

By cuts used in Eqs.(19) - (21), spin correlations are
cut along the imaginary-time direction. We consider the
fewest number of cuts per spin. Since the imaginary-time
direction has periodic boundary conditions, by considering
a percolation of spin correlations, the fewest number of
cuts per spin, nfewest cut, is obtained as two,

nfewest cut = 2. (30)

By using Eqs. (22) and (30), the fewest number of
cuts per spin for parallel spins along the imaginary-time
direction, nfewest add, is obtained as

nfewest add + nkink = 2. (31)

By using Eq.(20), the average number of cuts per spin
for parallel spins along the imaginary-time direction is
obtained as

add

add add
0

( ) ( ) .
n

n P n tγ β
∞

=
=∑ (32)

Therefore, when there is no kink (nkink = 0), by using
Eqs. (31) and (32), we obtain a smallest effective transverse
field Sγ  as

2 .Sγ β
= (33)

When there are kinks, by using Eq. (31), nfewest add is
obtained as

nfewest add < 2, (34)

since nkink > 0. Therefore, when there are kinks, a smallest
effective transverse field Sγ  is obtained as

S Sγ γ< . (35)

If there is no kink, the transverse field γ  for Sγ γ<
is not effective for generating quantum effect. γ  for

Sγ γ=  is effective for generating quantum effect regardless
of the number of kinks. A smallest effect transverse field
that does not depend on the number of kinks is desired in
this study. Therefore, we estimate that Sγ  is the smallest
effective field that should be used in this study.

We propose a QA schedule for studying transverse-
field-based quantum versus classical annealing of the Ising
model by utilizing the field Sγ  as

2( ) ,S E E
I I

t tt H H
T T

γ γ θ θ
β

⎛ ⎞ ⎛ ⎞
= − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
(36)

where HE(x) is the Heaviside step function, using the half-
maximum convention, which gives 1 if x > 0, gives 0.5 if
x = 0, and gives 0 if x < 0. θ  is an adjusting value for
0 1θ≤ < . The value θ  is set to 0.5 for example. Here, in
this study, t is the Monte Carlo time, and TI is the ending
Monte Carlo time. The present QA schedule is made for
the comparison between the system with no transverse field
and the system with the smallest effective transverse field.
The inverse temperature β  is set to a low but finite
temperature. For J(t) in Eq. (1), using J(t) = t / TI for
0 It T≤ ≤  may be the simplest form as used in Ref. [7].
Therefore, we investigate

1

2( ) 0.5
N

z z x
I ij i j E i

I Iij i

t tt H
T T

τ σ σ σ
β< > =

⎛ ⎞
= − − −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑H (37)

as the present-quantum-annealing schedule in this article.
The Hamiltonian H2(t) for a conventional-quantum-
annealing schedule is given by [7]

2
1

( ) 1 .
N

z z x
ij i j i

I Iij i

t tt
T T

τ σ σ σ
< > =

⎛ ⎞
= − − −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑H (38)

We also investigate H2(t) as a conventional-quantum-
annealing schedule in this article for comparison. As a
classical-annealing schedule, we investigate

3( ) z z
ij i j

I ij

tt
T

τ σ σ
< >

= − ∑H (39)

in this article for comparison. As for calculating annealing
processes, this classical annealing schedule is
mathematically the same with a classical annealing for J =
1, ( ) It t Tβ β=  and γ  = 0 in Eq. (6), thus we investigate
H3(t).

In Refs. [3, 11], an another quantum-annealing
schedule has also been applied. This QA schedule is that
the transverse field γ (t) is initially much larger than the

couplings, (0) (0) ijJγ τ , J(t) is a constant for t, and,
during QA, γ (t) is slowly reduced to zero. For this
annealing schedule, it is reported in11 that Monte Carlo
simulations for the Ising spin glass model on the square
lattice in the physically relevant continuous-imaginary-time
limit do not show superiority of QA against CA. We do
not investigate this schedule in this article because the
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results are already shown in11. This schedule is the
conventional schedule of the quantum annealing, and the
schedule of H2(t) is the conventional schedule used in a
quantum computation by adiabatic evolution7,8. The
schedule of H2(t) has not been tested in the framework of
the quantum annealing, thus we investigate the schedule
of H2(t) in this article.

A method using a pulse of the transverse field is also
proposed in16, however the annealing schedule for this
method is unclear in16. Thus we do not compare the present
annealing schedule with this method in this article.

We investigate the effectivities for H1(t), H2(t) and
H3(t) in this article.

In this study, the exchange interaction is tuned instead
of the temperature. Even if the temperature is tuned, the
temperature is tuned from infinity to a low temperature
since our aim is to simulate real-physical systems. It can
be considered that the temperature does not reach absolute
zero in real-physical systems. It can be reasonable that the
final temperature of annealing is a low temperature. In this
study, the exchange interaction changes instead of the
temperature, thus, if the transverse field is imposed, the
annealing becomes QA, and, if the transverse field is not
imposed, the annealing becomes CA.

By using Eqs. (22) and (32) on condition of no kink
and a fixed number for adding cuts, the transverse field is
quantized as

( ) , 2,3,4.... ,Q
nn nγ
β

= = (40)

in the Ising model for generating quantum effect. Even if
a transverse field Qγ (n) is imposed, the quantum effect
increases with increasing the number of kinks. However,
to know that the transverse field is quantized as in Eq.
(40) can be convenient for adjustment of the quantum
effect. Qγ (2) is the smallest effective field used in this
study ( Qγ (2) = Sγ ). If a transverse field Qγ  for n = 3 is
imposed, the generation of quantum effect for n = 3 is
guaranteed at least. When a transverse field exγ  is imposed
for example, the quantum number nex is obtained as nex =

exβγ . If nex < 2, exγ  is estimated as no effective for
generating quantum effect. If nex ≥ 2, the generation of
quantum effect for nex is guaranteed at least. Since very
large n disorders spin orders too much, searching proper n
for time t is, of course, required for good performance of
optimization. This quantization is a quantization for the
number of cutting spin correlation per spin along the

continuous-imaginary-time direction. Because the quantum
effect by the transverse field depends on the number of
the cuts for the correlation lengths along the continuous-
imaginary-time direction, we focus on this quantization, and
we utilize the fewest quantum number in this article.

Simulation Results

We firstly tested our program source code for the two-
spin-model case in order to fix software bugs, because static
properties in the two-spin model are exactly calculated. We
secondly tested our program source code for the one-
dimensional ferromagnetic Ising spin chain with periodic
boundary conditions under the transverse field ( ijτ  = 1
and ( )tγ γ= ) in order to fix software bugs. The critical
properties at TE = 0 are identical to those of the classical
two-dimensional Ising model and are well known exactly
(the critical exponents are 1, 1, 1 / 8Cγ ν β= = =  and z =
1)23. We confirmed the values of the critical exponents ν
and β  by using this algorithm and the finite-size-scaling
method. We do not show the results of the two-spin-model
case and the one-dimensional-ferromagnetic-Ising-spin-
chain case, because the simulations were performed for
fixing software bugs. Software bugs are fixed as above.

Next, we performed simulations for the ± J Ising spin
glass model on the square lattice with periodic boundary
conditions. For each system size and each ending Monte
Carlo time, 100 realizations of ijτ  were investigated. For
each realization, 10 simulations were performed. Thus,
1000 simulations were performed for each system size and
each ending Monte Carlo time. 100 Monte Carlo steps were
used for preparing the initial states at each simulation. The

Fig. 3: The relation between the ending Monte Carlo time TI and the
residual energy Eres. The results of the ± J Ising spin glass model on the
square lattice are shown. The number of spins, N, is 100, and the inverse
temperature β  is 10. The solid square represents the result for the
classical-annealing schedule, the solid circle represents the result for the
conventional-quantum-annealing schedule, and the open circle represents
the result for the present-quantum-annealing schedule.
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inverse temperature β  was set to β  = 10. The CA
schedule, the conventional-quantum-annealing (CQA)
schedule and the present-quantum-annealing (PQA)
schedule were performed. All the instances used for CA,
CQA and PQA are the same.

Fig. 3 shows the relation between the ending Monte
Carlo time TI and the residual energy Eres given in Eq.
(28). The number of spins, N, is 100. The solid square
represents the result for the CA schedule, the solid circle
represents the result for the CQA schedule, and the open
circle represents the result for the PQA schedule. At TI =
200, the result of CA is better than the results of CQA and
PQA. At TI = 1600, the results of CQA and PQA are better
than the result of CA. Therefore, by fast annealing, CA is
seen to outperform QA, but, by slow annealing, QA is seen
to outperform CA. At TI = 200 and TI = 400, the results
of PQA are better than the results of CQA.

Fig. 4: The relation between the ending Monte Carlo time TI and the
accuracy Pexact. The results of the ±J Ising spin glass model on the
square lattice are shown. The number of spins, N, is 100, and the inverse
temperature β  is 10. The solid square represents the result for the
classical-annealing schedule, the solid circle represents the result for the
conventional-quantum-annealing schedule, and the open circle represents
the result for the present-quantum-annealing schedule.

Fig. 4 shows the relation between the ending Monte
Carlo time TI and the accuracy Pexact given in Eq. (29).
The number of spins, N, is 100. The solid square represents
the result for the CA schedule, the solid circle represents
the result for the CQA schedule, and the open circle
represents the result for the PQA schedule. At TI = 200,
the result of CA is better than the results of CQA and PQA.
At TI = 1600, the results of CQA and PQA are better than
the result of CA. Therefore, by fast annealing, CA is seen
to outperform QA, but, by slow annealing, QA is seen to
outperform CA. At TI = 400 and TI = 1600, the results of
PQA are better than the results of CQA.

From Figs. 3 and 4, by fast annealing, CA is seen to
outperform QA at a number of spins, but, by slow
annealing, QA is seen to outperform CA at the number of

spins. From Figs. 3 and 4, PQA is seen to outperform CQA.

Fig. 5: The relation between the number of spins, N, and the residual
energy Eres. The results of the ±J Ising spin glass model on the square
lattice are shown. The ending Monte Carlo time TI is 1600, and the
inverse temperature β  is 10. The solid square represents the result for
the classical-annealing schedule, the solid circle represents the result for
the conventional-quantum-annealing schedule, and the open circle
represents the result for the present-quantumannealing schedule.

Fig. 5 shows the relation between the number of spins,
N, and the residual energy Eres given in Eq. (28). The
ending Monte Carlo time TI is 1600. The solid square
represents the result for the CA schedule, the solid circle
represents the result for the CQA schedule, and the open
circle represents the result for the PQA schedule. At N =
100, the result of QA is better than the result of CA. QA
is seen to outperform CA at large system sizes. At N = 36,
the result of PQA is better than the result of CQA. We can
see that the results of CQA and PQA are better than the
result of CA for N dependence. This shows the superiority
of QA against CA. We could not see the superiority of
PQA against CQA for N dependence.

Fig. 6 shows the relation between the number of spins,
N, and the accuracy Pexact given in Eq. (29). The ending

Fig. 6: The relation between the number of spins, N, and the accuracy
Pexact. The results of the ± J Ising spin glass model on the square lattice
are shown. The ending Monte Carlo time TI is 1600, and the inverse
temperature β  is 10. The solid square represents the result for the
classical-annealing schedule, the solid circle represents the result for the
conventional-quantum-annealing schedule, and the open circle represents
the result for the present-quantum-annealing schedule.
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Monte Carlo time TI is 1600. The solid square represents
the result for the CA schedule, the solid circle represents
the result for the CQA schedule, and the open circle
represents the result for the PQA schedule. At N = 100,
the result of QA is better than the result of CA. QA is
seen to outperform CA at large system sizes. At N = 36
and N = 100, the results of PQA are better than the results
of CQA. We can see that the results of CQA and PQA are
better than the result of CA for N dependence. This shows
the superiority of QA against CA. We could not see the
superiority of PQA against CQA for N dependence.

From Figs. 5 and 6, QA is seen to outperform CA
for the dependences of the number of spins. From Figs. 5
and 6, PQA is seen to outperform CQA.

Concluding remarks

We performed Monte Carlo simulations for the spin
glass model on the square lattice. As the simulation results,
QA was seen to outperform CA at a number of spins when
the annealing time was sufficiently spent. As the simulation
results, QA was seen to outperform CA for the dependences
of the number of spins when the annealing time was
sufficiently spent. Therefore, our conclusion is that there
is a superiority of QA against CA for the spin glass model
by using Monte Carlo simulations.

QA was seen to outperform CA for the system-size
dependences. However, we were not able to numerically
estimate whether the dependences are power dependences
or exponential dependences, because the dependences were
not clear enough. Although the numerical estimations for
the system-size dependences would be hard tasks, the
estimations are tasks for the future.

Conventionally, operating the temperature TE with a
fixed J(t)(= J) and no ( )tγ  term of Eq. (1) is called CA,
however, in this article, we called that operating J(t) with
a fixed TE and no ( )tγ  term of Eq. (1) is CA. There are
two reasons. One is that, as for calculating annealing
processes, operating TE with a fixed J and no ( )tγ  term is
mathematically the same with operating J(t) with a fixed
TE and no ( )tγ  term. One is that operating J(t) with a
fixed TE and no ( )tγ  term is more practical in relation to
the D-Wave chip[10]. These may be trivial, but we consider
that these are also significant for understanding quantum
annealing computing.

In this article, results at a low temperature are only
shown. There is a problem of whether a temperature, that
changes the superiority QA over CA, exists or not.
However, investigating each optimized temperatures for

each annealings can be more important. These are tasks
for the future.

The size of the transverse field used in the
conventional QA schedule is larger than the size of that
used in the present QA schedule, however, as the simulation
results, the present QA schedule was more effective than
the conventional QA schedule. The reason may be that the
relaxation time for disorders by large transverse field is
required, although the tunneling effect by the transverse
field helps to make the systems escape from local minima
of the free energy. Therefore, this means that a thorough
investigation for setting of QA schedule is needed. This
can be an important task for the future.

Very recently, it is reported in24 that, by fast annealing,
QA is seen to outperform CA for their benchmark spin-
glass problems. On the other hand, our results showed that,
by slow annealing, QA is seen to outperform CA for our
benchmark spin-glass problems. Since the used annealing
schedules and the used models are different, we can not
say anything for the differences between the results, but
they have also proposed a way of comparing QA with CA.
Their schedule uses observables, on the other hand, our
schedule uses a smallest effective field. Their schedule can
be a better schedule, however their schedule depends on
models. On the other hand, our schedule does not depend
on models. For this difference between the QA schedules,
we believe that the present study is also significant. The
detailed comparison is a task for the future.

Other QA schedules using the smallest effective field
derived in this article may also be worth considering. The
present QA schedule is made based on the concept of
perturbation theory. Other QA schedules using the smallest
effective field based on the same concept can also be
considered, and some schedules among them may be better
for performance of optimization.

A set of the computer program source codes, used in
this study, is available on payment basis25.
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